【pytorch模型实现5】ChartextCNN

24 篇文章 2 订阅
24 篇文章 0 订阅

ChartextCNN模型实现

NLP模型代码github仓库:https://github.com/lyj157175/Models

import torch
import torch.nn as nn 


class ChartextCNN(nn.Module):
    '''6层卷积,3层全连接层'''

    def __init__(self, config):
        super(ChartextCNN, self).__init__()
        self.in_features = [config.num_chars] + config.features[:-1]
        self.out_features = config.features
        self.kernel_sizes = config.kernel_sizes
        self.dropout = config.dropout

        self.conv1d_1 = nn.Sequential(
            nn.Conv1d(self.in_features[0], self.out_features[0], self.kernel_sizes[0], stride=1),
            nn.BatchNorm1d(self.out_features[0]),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3)
        )
        self.conv1d_2 = nn.Sequential(
            nn.Conv1d(self.in_features[1], self.out_features[1], self.kernel_sizes[1], stride=1),
            nn.BatchNorm1d(self.out_features[1]),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3)
        )
        self.conv1d_3 = nn.Sequential(
            nn.Conv1d(self.in_features[2], self.out_features[2], self.kernel_sizes[2], stride=1),
            nn.BatchNorm1d(self.out_features[2]),
            nn.ReLU()
        )
        self.conv1d_4 = nn.Sequential(
            nn.Conv1d(self.in_features[3], self.out_features[3], self.kernel_sizes[3], stride=1),
            nn.BatchNorm1d(self.out_features[3]),
            nn.ReLU()
        )
        self.conv1d_5 = nn.Sequential(
            nn.Conv1d(self.in_features[4], self.out_features[4], self.kernel_sizes[4], stride=1),
            nn.BatchNorm1d(self.out_features[4]),
            nn.ReLU()
        )
        self.conv1d_6 = nn.Sequential(
            nn.Conv1d(self.in_features[5], self.out_features[5], self.kernel_sizes[5], stride=1),
            nn.BatchNorm1d(self.out_features[5]),
            nn.ReLU(),
            nn.MaxPool1d(kernel_size=3, stride=3)
        )

        self.fc1 = nn.Sequential(
            nn.Linear(8704, 1024),
            nn.ReLU(),
            nn.Dropout(self.dropout)
        )
        self.fc2 = nn.Sequential(
            nn.Linear(1024, 1024),
            nn.ReLU(),
            nn.Dropout(self.dropout)
        )
        self.fc3 = nn.Linear(1024, config.num_labels)


    def forward(self, x):
        # x = torch.Tensor(x).long()   # b, num_chars, seq_len
        x = self.conv1d_1(x)   # b, out_features[0], (seq_len-f + 1)-f/s+1  = 64, 256, (1014-7+1)-3/3 + 1=1008-3/3+1=336
        x = self.conv1d_2(x)   # 64, 256, (336-7+1)-3/3+1=110
        x = self.conv1d_3(x)   # 64, 256, 110-3+1=108
        x = self.conv1d_4(x)   # 64, 256, 108-3+1=106
        x = self.conv1d_5(x)   # 64, 256, 106-3=1=104
        x = self.conv1d_6(x)   # 64, 256, (104-3+1)-3/3+1=34

        x = x.view(x.size(0), -1)   # 64, 256, 34 -> 64, 8704
        out = self.fc1(x)           # 64, 1024
        out = self.fc2(out)         # 64, 1024
        out = self.fc3(out)         # 64, 4
        return out 


class Config:
    def __init__(self):
        self.num_chars = 70
        self.features = [256, 256, 256, 256, 256, 256]
        self.kernel_sizes = [7, 7, 3, 3, 3, 3]
        self.dropout = 0.5
        self.num_labels = 4


if __name__ == '__main__':
    config = Config()
    model = ChartextCNN(config)
    # print(model)

    x = torch.zeros([64, 70, 1014])  # b, num_chars, seq_len
    out = model(x)
    print(out.shape) 





  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: yolov5-pytorch模型部署可以通过以下步骤实现: 1. 安装必要的依赖库,如pytorch、numpy、opencv等。 2. 下载yolov5-pytorch模型,并将其加载到内存中。 3. 准备待检测的图像或视频数据。 4. 对待检测的数据进行预处理,如缩放、归一化等。 5. 将预处理后的数据输入到yolov5模型中进行检测。 6. 解析检测结果,并将其可视化或保存到文件中。 7. 可以将部署好的模型封装成API接口,供其他应用程序调用。 需要注意的是,模型部署的具体实现方式可能因应用场景而异,例如在嵌入式设备上部署时可能需要进行模型压缩和量化等操作。 ### 回答2: yolov5-pytorch是一种目标检测算法,能够在图像中检测到人、车、建筑等物体,因此在工业生产、医学影像、智能交通等领域得到了广泛的使用。在应用场景中,通常需要将yolov5-pytorch模型部署在服务器上,以便实现实时检测与处理的需求。 要部署yolov5-pytorch模型,需要以下步骤: 1. 准备工作 - 安装pytorch和opencv等依赖库; - 下载yolov5-pytorch源码; - 准备训练集并训练模型。 2. 模型测试 对于训练好的模型,需要进行测试以验证其性能。 - 使用测试集或者视频等数据进行测试; - 可以使用官方提供的test.py或者自定义脚本进行测试; - 统计模型的 AP、F1 score、precision等数据,并分析模型性能和精度。 3. 模型部署 - 可以使用flask等框架进行部署; - 按照官方提供的推理代码进行部署; - 必要时进行模型量化、裁剪等优化操作,以减小模型大小和加速推理速度; - 针对不同的应用场景,可以构建不同的数据预处理和后处理流程,提高模型的优化和性能。 总之,对于yolov5-pytorch模型部署来说,关键是理解原理和基本操作,并结合实际应用场景进行优化和测试。只有在实践中不断探索和改进,才能够实现高效、精确的目标检测应用。 ### 回答3: YOLOv5是最近比较火的目标检测模型,其结构简单,速度快,准确率高,因此得到了广泛的应用。在生产环境中,我们需要将YOLOv5模型部署到特定的硬件设备上,以便快速地对图像或视频流进行实时的目标检测和识别。本文将介绍如何将YOLOv5模型部署到Pytorch环境中。 1. 准备工作 在开始部署模型之前,我们需要做一些准备工作: - 安装Pytorch和torchvision - 下载YOLOv5源代码 - 下载预训练权重文件 2. 模型转换 我们需要将YOLOv5的模型转换成适合部署的格式。YOLOv5的模型结构采用Pytorch实现,我们需要将其转换为ONNX格式,以便部署到不同的硬件设备上。通过执行以下命令可以将模型转换为ONNX格式: python models/export.py --weights yolov5s.pt --img 640 --batch 1 3. 部署模型 将生成的ONNX模型导入到Pytorch环境中,并使用特定的库将其部署到硬件设备上。部署的目标设备可能有所不同,例如,我们可以将模型部署到树莓派、Jetson Nano等低功耗嵌入式设备,也可以将其部署到高端GPU服务器中,以实现更快速的目标检测。 在部署模型时,我们需要使用特定的库和API,例如TensorRT、OpenVino等。这些库可以提高模型在不同硬件设备上的性能和速度。 4. 测试模型 部署模型后,我们需要对其进行测试。我们可以使用现有的数据进行测试,也可以使用摄像头或者图像流实时进行目标检测。我们需要对检测结果进行验证,包括检测结果是否准确、检测速度是否满足要求等。 5. 优化模型 在部署模型时,我们也需要考虑优化模型以提高其性能和速度。优化模型的方法包括: - 模型剪枝和量化 - 使用特定的库和API - 模型硬件加速 总结 通过以上步骤,我们可以将YOLOv5模型部署到Pytorch环境中,并实现高效的目标检测。随着硬件设备的不断升级和优化,我们可以不断地探索如何优化模型以适应更多的应用场景,提高模型的性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值