AI Python 教程

本文介绍了Python在人工智能领域的广泛应用,从基础概念到高级技术,如机器学习(监督、非监督)、深度学习、自然语言处理、计算机视觉和生成式AI。文章强调了Python的易用性、丰富库和强大的社区支持,以及在职业发展中的重要角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文AI之Python教程,你会浏览到使用Python编程的人工智能的基础和高级概念。无论你是一个完全的新手或者一个经验丰富的专家,这篇教程经过定制来满足你的学习需求,题哦那个一个逐步深入的方法来掌握基于Python的AI技术。
从理解基本概念到探索高级算法和应用,这篇教程用必备的技巧和知识来武装你深入到令人兴奋的AI世界。无论你在寻找构建你的AI职业生涯还是增强你的现有技能,这篇教程为你的AI之旅提供坚实的基础。

为什么使用Python学习AI?

Python提供清晰和可读性的语法因此提供一条顺畅的学路径来学习和构建智能模型而不需要复杂的代码结构。使用Python最棒的部分是它丰富的库和框架生态系统特别是为AI定制的机器学习。Python拥有强大的社区,里面有AI狂热者,研究人员和开发人员,他们可以分享知识、洞见和资源。Python AI社区的合作精神确保帮助触手可及。

AI之Python

前提

人工智能之旅要求强大的Python编程基础,而且要确保你有强烈的纯粹的出发点,我们鼓励你参考Python教程,对于初学者和经验丰富的开发人员他都是无价的资源。

AI Python教程

于此,你将学习基于Python的全部AI概念。首先,我们覆盖AI,包括它的分支如机器学习、深度学习、自然语言处理和计算机视觉。此外,我们探索流行的AI技术,包括生成式AI以及更多。

人工智能

人工智能是一个计算机系统,它能够执行需要人类智力的任务。这些任务可以是问题解决、机器翻译、图像生成和决策制定。人工智能系统首要目标是复制或者模拟人类一样的认知功能,赋能机器来解决繁琐的任务并适应多变的环境。人工智能子集包括机器学习、深度学习、自然语言处理、计算机视觉、机器人技术和生成式人工智能。
为了开发这些复杂的模型,我们利用Python框架,像Scikit-learn, TensorFlow和PyTorch.

  • TensorFlow由谷歌大脑团队开发,它提供全面的工具套装来构建和训练神经网络。
  • PyTorch是脸书人工智能研究实验室开发的一个框架,相比静态图像它让调试和更直觉性的模型构建过程简单化。
  • Scikit-Learn是一个用户友好型学习库,它聚焦在监督和非监督学习。
    这些框架提供多用性和伸缩性来授权开发者和研究人员横跨大范围的应用创造智能解决方案。

AI之Python - 机器学习

机器学习是人工智能的一个子领域,它让开发者聚焦在算法和模型开发,他们让电脑学习和进行预测而不需要进行明确的编程。
有四种类型的机器学习技术:

  • 监督学习
  • 半监督学习
  • 非监督学习
  • 增强学习

监督学习

在监督机器学习中,算法在一个打标签的数据集上训练,其中每一个输入跟他对应的输出进行配对。应用包括分类和回归任务。

回归算法
  • 线性回归
  • 多项式回归
  • 支持向量机回归
分类算法
  • 逻辑回归
  • 决策树
  • 集成分类器
  • 支持向量机
  • k最邻近法
  • 朴素贝叶斯

非监督学习

非监督学习中,提供给算法未打标签的数据,算法的任务是找到其中的模型或者关联。算法的目标是发现数据内在的结构或者分组。非监督学习的应用包括聚类和数据降维。

聚类算法
  • k均值聚类算法
  • 层次聚类算法
  • 基于密度的噪声应用空间聚类算法
数据降维
  • 主成分分析
  • t分布-随机邻近嵌入
  • 线性判别分析

增强学习

在增强学习中,算法通过与环境交互并接收奖励或惩罚形式的反馈来学习。算法目标是发现最优策略或者行为来随着时间获得最大化累积奖励。应用包括游戏博弈,机器人技术,自治系统。流行的增强学习算法如下:

  • Q-learning
  • 基于模型的增强学习
  • Deep Q Network(DQN)
  • Actor Critic
  • Monte Carlo Policy Evaluation
  • SARSA(State-Action-Reward-State-Action)
    尽管机器学习取得了成功,在开发和采用机器学习的时候仍有一些限制。关键的限制如下:
  • 机器学习模型依赖手工特性,而且其性能受到这些特性的质量和相关性限制。因此,提取信息特性是个挑战。
  • 机器学习算法应对高维度和非结构化数据类型,比如图像、音频和文本非常困难。
  • 机器学习模型受限于它们对非线性且复杂的关系的建模能力。

AI之Python - 深度学习

深度学习是机器学习的子领域。深度学习模型衍生于人类大脑结构的创意。人类大脑由数十亿个神经元组成,他们通过电子化学信号进行沟通,在深度学习中,人工神经网络由通过权重互联的节点组成。

深度学习基础

深度学习中的术语“深度”是指这些网络的多层(深度),允许他们从海量数据集中学习复杂模型和特性。为了理解基础的神经网络,我们需要构建坚固的准备工作来使用下列基础掌握深度学习:

  • 梯度下降算法
  • 反向传播
  • 超级参数
    • 激活函数
    • Epochs
    • 损失函数
    • 优化器
    • Batch Size
    • 学习率
  • 损失函数

深度学习架构

深度学习架构是被设计用于促进通过自动识别数据中的模式和表示的复杂学习任务的结构化神经网络模型。以下是深度学习的基础结构:

  • 感知机
  • 前馈神经网络
  • 多层感知机
  • 人工神经网络
  • 卷积神经网络
  • 循环神经网络
  • 长短期记忆网络
  • 门控循环单元
  • 自编码器
  • 胶囊网络

AI之Python - 自然语言处理

自然语言处理聚焦在计算机和人类语言之间的交互操作。自然语言处理让机器理解、解释和生成类似人类的文本,允许无缝的交流。自然语言处理的基础包括让机器理解、解释和生成人类语言的基础原则和技术。关键组成部分如下:

文本处理和表示

自然语言处理里面的文本处理和表示是指处理和转换文本数据用于分析以及机器学习应用的任务。文本处理用于操作和准备文本数据进行分析,文本表示包括转换文本信息为某个可以有效被处理并且被机器理解的格式。以下是处理和表示文本的方法:

文本处理
  • Tokenization
  • 词干提取
  • 词性还原
  • 停用词删除
  • 文本规范化
  • 词性标注
文本表示
  • 实体识别
  • 词袋模型
  • 词嵌入
    • 词向量
    • 词表示全局变量
    • fastText
    • 词嵌入自语言模型
    • Skip-grams
  • 词频-逆文件频率
  • 段落向量
词汇语义学

词汇语义学聚焦在语言中单词的意义和他们的关系,并探索单词如何传达意义。

  • 词语消歧义
  • 语义相似度

AI之Python - 计算机视觉

计算机视觉是人工智能里的综合学科领域,它让机器从世界中解释、分析和理解视觉信息,非常类似人的视觉系统。它涉及开发能够让计算机从图片、视频和其它可视化数据中获得洞察的算法和系统,允许它们识别物体,理解场景并执行这样的任务:图片分类,物体检测和人脸识别。

图像处理和转换

图像处理和转换是指用来操作和增强数字图像的技术和方法。这些处理涉及应用各种各样的操作来修改一张图片的外观、质量或者内容信息。以下是图像处理和转换的关键概念:

  • 图像转换
  • 图像增强
  • 图像锐化
  • 边缘检测
  • 平滑和模糊图像
  • 图像去噪

图像识别架构

图像识别架构是专用模型或者神经网络结构用于识别和分类图像中的物体的目的。随着时间发展,出现了大量架构。一些图像识别模型列举如下:

  • AlexNet
  • VGGNet
  • GoogleLeNet
  • ResNet
  • MobileNet
  • Xception
  • EfficientNet
  • DenseNet

物体检测架构

物体检测架构利用深度学习技术来检测和分类变化方向的物体。有两种主要的物体检测技术:两步检测器和单步检测器。

两步检测器

两步检测器遵循一个两步骤的流程。首先,他们使用比如区域候选网络方法来生成可能包含物体的候选区域。第二个步骤,这些候选区域被分类和重定义来得到最终的物体检测。一些两步检测模型如下:

  • 基于区域的卷积神经网络
  • Fast R-CNN
  • Faster R-CNN
  • Cascade R-CNN
单步检测器

单步检测器以单步前向通过网络的方式执行物体检测。他们直接从预定义的锚框横框多个比例来预测边界框和分类可能性。示范模型包括:

  • YOLO (You Only Look Once)
  • SSD (Single Shot Detector)

图像分割架构

图像分割架构模型对一个输入图像创建分区形成不同的区域或者物体。图像中的每一个像素被打标,然后分配到一个特定的段落。图像分割主要架构包括:

  • U-Net
  • K均值聚类
  • Mask R-CNN
  • YOLOv8
  • Cascade Mask R-CNN
  • 金字塔场景解析网络
    计算机视觉在多种应用里发挥至关重要的作用,包括自动驾驶汽车,医疗图像分析,网络监控,增强现实,以及更多其它应用。

AI之Python - 生成式AI

生成式人工智能重造那些可以产生新内容的模型,新内容通常包括图像、文本、音频、或者各种各样的数据形式。该人工智能领域专门基于学习到的模式和结构来产生新颖的和多种多样的输出。

图像生成架构

图像生成架构是指专门的模型或者神经网络结构用于生成现实图像的目的。这些架构使用生成式模型来创建既现实又多样性的可视化内容。以下是一些值得注意的图像生成架构示例:

  • Variational Autoencoders
  • 生成式对抗网络
  • 条件生成对抗网络
  • Wasserstein GAN (WGAN)
  • Progressive GAN
  • BigGAN
  • CycleGAN
  • VQ-VAE-2 (Vector Quantized Variational Autoencoder)
  • Style GANs
文本生成架构

文本生成架构是指专用模型或者神经网络结构用于创建新文本内容的目的。这些架构使用生成式模型来产生既符合逻辑又能上下文恰当的文本。一些文本生成模型如下:

  • Transformers
  • GPT (生成式预训练Transformer模型)
  • 基于Transformer的双向编码器表示
  • T5(Text-to-Text Transfer Transformer)
  • CTRL (Conditional Transformer Language Model)
  • UniLM (Unified Language Model)
音频生成架构

专门用于音频生成的架构是特殊的神经网络模型用于生成新颖的音频内容的目的。这些架构使用生成式模型来创建真实的声音序列。一些主流音频生成模型如下:

  • WaveNet
  • WaveGAN
  • Tacotron2
  • EnCodec
  • AudioLM
  • Deep Voice

我们通过在人工智能旅程中游览,领略到机器学习、深度学习、计算机视觉、生成式人工智能和自然语言处理等有趣的话题。Python在优雅和高效地提供智能解决方案方面发挥着重要的作用。Python人工智能站在编码和智能的交叉点位置。

AI之Python教程 - 常见问题

1. 什么是人工智能?

人工智能是指机器通过编程来像人类一样思考和行动,实现人类智力的模拟。想象一下机器能像人一样学习和行动!这是人工智能的基本概念。一切目标都是为了让计算机足够智能来解决问题、理解信息、甚至独立制定决策,正如我们人类一样。

2. 人工智能分哪些不同类型?

有不同的方式来解读人工智能,这里有两种主要的分类:

  • 狭义人工智能:这是你最常见的一种,比如手机里面的人工智能助手或者自动驾驶汽车。它擅长特定的任务,但是不像人类一样灵活。
  • 通用人工智能:这是人工智能的圣杯 - 机器像我们一样聪明,能够学习和完成任何人类能做的事情。我们离这个目标还很远,但这是一个迷人的目标。

3. 为什么Python盛行于人工智能开发?

Python是一个友好的编程语言,易学、强大,而且有大量专门为人工智能设计的库,比如:

  • Numpy:处理数字的一流工具
  • Pandas:组织数据像宽表一样容易
  • scikit-learn:具备现成的常见人工智能任务工具
  • TensorFlow & PyTorch:构建复杂人工智能模型,比如图像识别或者语言翻译

4. 基于Python的人工智能领域有什么样的职业机会?

人工智能是一个飞速发展的领域,因此对于知道如何构建和使用它的人有大量需求。具备Python技能,你可以成为一个人工智能工程师,研究院,数据科学家,甚至开启你自己的基于人工智能的商业。

5. 可以用Python执行人工智能任务吗?

Python丰富的生态系统是各种各样人工智能任务的理想选择,从构建简单的脚本到复杂的模型。像TensorFlow和PyTorch这样流行的库给机器学习和深度学习提供强大的工具。

6. 哪个Python版本最适合人工智能?

Python 2和3都有人工智能应用,新的工程建议选择Python 3因为它有更好的性能、安全性和社区支持。大多数人工智能库已经为Python 3做了兼容优化。

7. 基于Python的人工智能困难吗?

难度取决于你先前的编程经验和需要处理的特定人工智能任务。人工智能基础概念可以相对容易掌握,但是构建复杂的模型需要更深的理解和实践。

推荐学习路径:学习数据结构和算法-> 掌握前端、后端、全站开发-> 构建工程-> 持续应用所学到工作上

参考: AI之Python教程

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值