文章目录
🔥主流AI大模型集聚地 + 上百种AI工作流落地场景 = 能用AI
🔥传送门:https://www.nyai.chat/chat?invite=nyai_1141439&fromChannel=csdn241008_python_AI
摘要
在这篇文章中,我将带你从0到1的了解,如何使用Python,构建你人生中的第一个人工智能AI模型。无论你是编程新手,还是希望深入探索人工智能领域的开发者,这篇文章都将为你提供清晰、详细的指南。我们将逐步介绍数据预处理、模型建立、训练和测试的过程,以及如何解读模型的结果。
引言
人工智能(AI)已经成为当今最热门的话题之一。AI 的应用领域不仅当今最流行的文生文,文生图,视频制作,AI绘画等等,除了这些还有生活中的方方面面。而Python 是人工智能(AI)领域中最常用的编程语言,原因包括其简单易学、广泛的三方库和框架支持,以及庞大的社区,成为了人工智能开发的首选语言。
Python是一种解释型、面向对象的高级程序设计语言,其简单明了的语法和强大的标准库使我们能够快速上手。尤其是在人工智能领域,Python的地位无可替代。它拥有众多强大的开源库,如NumPy、Pandas、Matplotlib、Sci-kit Learn、TensorFlow和PyTorch等,这些库大大降低了开发难度。
接下来,我们将详细介绍,如何利用Python的第三方库,带你走进AI的世界。
数据预处理:为模型打下坚实基础
数据预处理是AI和机器学习中至关重要的一步。好的数据预处理工作是建立高效模型的基础。干净、整洁和准确的数据能够帮助模型更好地学习和预测,而嘈杂或错误的数据则可能导致模型性能下降。
数据预处理的步骤
- 处理缺失值、去除异常值和重复值。
- 进行数据类型转换、离散化等。
- 将数据缩放到一定范围内,进行归一化或标准化。
Python示例
以下是一个简单的数据清洗和预处理示例:
import pandas as pd
import numpy as np
# 创建一个简单的数据集
data = pd.DataFrame({
'name': ['Alice', 'Bob', 'Charlie', 'David'],
'age': [24, np.nan, 30, 29],
'gender': ['F', 'M', 'M', 'M']
})
# 处理缺失值
# 使用中位数填充缺失的年龄
data['age'].fillna(data['age'].median(), inplace=True)
# 将性别转换为数值类型,使用替换方法
data['gender'].replace({
'M': 1, 'F': 0}, inplace=True)
# 数据规范化
# 规范化年龄,使用 Min-Max 归一化方法
data['age'] = (data['age'] - data['age'].min()) / (data['age'].max() - data['age'].min())
print(data)
代码说明:
-
数据创建:
- 创建一个包含姓名、年龄和性别的简单数据集。
-
缺失值处理:
- 使用
fillna
方法将缺失的年龄填充为该列的中位数。
- 使用
-
性别转换:
- 将性别从字符类型转换为数值类型,使用
replace
方法。
- 将性别从字符类型转换为数值类型,使用
-
数据规范化:
- 使用 Min-Max 归一化方法规范化年龄,使其值在 [0, 1] 之间。