Teacher-Forcing, Student-Forcing, Schedual sampling , Teacher-Recommended and Professor-Forcing训练策略

本文介绍了深度学习序列生成任务中的几种训练策略,如Teacher-Forcing的快速收敛但预测阶段的问题,Student-Forcing的误差爆炸,以及 Scheduled Sampling 的平衡方案。此外,还探讨了Teacher-recommended和Professor-Forcing策略,旨在解决训练与推断阶段的不一致性和模型泛化问题。这些方法在自然语言处理和序列生成任务中具有重要意义。
摘要由CSDN通过智能技术生成

「Teacher forcing」

如果我们能够在每一步的预测时,让老师来指导一下,即提示一下上一个词的正确答案,decoder就可以快速步入正轨,训练过程也可以更快收敛。因此大家把这种方法称为teacher forcing。所以,这种操作的目的就是为了使得训练过程更容易。

缺点:(1)预测(inference stage)时我们没有老师给你做标记了!纯靠自己很可能挂掉。

(2)对于NMT任务来说,不可能保证某种语言中的每一个词在另一种语言中都有对应的词语 【1】。(3)强制词语对应消除了语义相似的其他翻译结果,扼杀了翻译的多样性,(4)Overcorrect 问题 【1】,解释如下:

1. 待生成句的Reference为: "We should comply with the rule."
2. 模型在解码阶段中途预测出来:"We should abide"
3. 然而Teacher-forcing技术把第三个ground-truth "comply" 作为第四步的输入。那么模型根据以往学习的pattern,有可能在第四步预测到的是 "comply with"
4. 模型最终的生成变成了 "We should abide with"
5. 事实上,"abide with" 用法是不正确的,但是由于ground-truth "comply" 的干扰,模型处于矫枉过正的状态,生成了不通顺的语句。

 

preview

「Free running」/「Student forcing」 一步错,步步错。这样会导致训练时的累积损失太大(「误差爆炸」问题,exposure bias),训练起来就很费劲。

为了兼得二者优势,规避二者劣势

提出更好的办法、更常用的办法,是老师只给适量的引导,学生也积极学习。即我们设置一个概率p,每一步,以概率p靠自己上一步的输入来预测,以概率1-p根据老师的提示来预测,这种方法称为「计划采样」[2]&

  • 14
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
零强迫(zero-forcing)方法是一种在多用户多输入多输出(MIMO)信道中进行下行空间复用的技术。在MIMO系统中,一个基站可以同时向多个用户发送数据,以提高整体的系统容量和传输效率。 使用零强迫方法时,系统通过使用线性预编码来降低干扰,从而在多用户之间实现空间复用。具体来说,基站可以将具有不同数据流的用户分为不同的组,并采用零强迫预编码矩阵来抵消相互干扰。通过将零强迫矩阵应用于发送信号,基站可以在每个用户的接收天线上产生所需的用户特定信号,从而最大程度地降低相互之间的干扰。 零强迫方法的主要优点是简单且易于实现。它不需要对信道进行精确估计,也不需要复杂的优化算法。此外,零强迫方法还可以提供接近最大传输速率的性能,并在减少干扰的同时实现空间复用。 然而,零强迫方法也存在一些限制。由于使用线性预编码,它无法完全消除干扰,而是通过减小干扰来实现空间复用。此外,零强迫方法还受到天线数量和系统容量的限制,因为在用户数量增加时,干扰和复杂度也会增加。 总之,零强迫方法是一种在多用户MIMO系统中实现下行空间复用的简单有效的技术。它通过采用零强迫矩阵对干扰进行抵消,提高系统容量和传输效率。然而,它仍然存在一些限制,需要进一步优化和改进以适应不同的应用场景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值