三种方法实现最大子段和问题C++

一.穷举法

例:

a=[-20 11 -4 13 -5 -2]
输出:  
    11 -4 13
    20

代码: 

//穷举 
#include<iostream>
#include<vector>
using namespace std;
int main()
{
	int n,a[100],max=0,sum=0;
	vector<int>temp; //保存最优解的起始地址和终止地址
	//freopen("input.txt","r",stdin) ;
	cin>>n;
	for(int i=0;i<n;i++)
	cin>>a[i];
	for(int i=0;i<n-1;i++)//固定要遍历的区间
	{
		for(int j=i+1;j<n;j++)
	{
		for(int k=i;k<=j;k++)//对固定区间的每个位置进行遍历
		{
			sum+=a[k];//计算a[i]+...+a[j]的值
			if(sum>max)//更新最大值
			{
				temp.push_back(k);//temp[0]存起始地址,temp[1]存终止地址
				max=sum;
			 } 
			
		}
		
	sum=0;//每个区间遍历结束后置零	
	}
	}
int m=temp[0];n=temp[1];
	for(int i=m;i<=n;i++)//输出最优解
	{
		cout<<a[i]<<" ";
	
	} 
		cout<<"\n";
	cout<<max;
	return 0;
 } 

穷举法的时间复杂度为O(n^3)

二.分治法

 基本思路:

1 利用分治法,将[left,right]数组从mid和mid+1之间分成左边部分和右边部分

2 分别找三个位置的最大子段和

        ①左边部分leftsum(在区间[left,mid]继续分治)

        ②右边部分rightsum(在区间[mid+1,right]继续分治)

        ③中间部分midsum(等于leftsum+rightsum)

3 比较leftsum,rightsum,midsum的大小,最大的即为问题的解

代码:

 //分治 
#include<iostream>
#include<vector>
using namespace std;
int a[100];
int besti,bestj;//besti记录最大子段和的起始地址,bestj记录终止地址
int maxfind(int left,int right)
{
	
	int lefts,rights,mid,s1,s2;
	int sum=0,leftsum=0,rightsum=0,midsum=0;
	if(right==left)//递归的边界条件 
	{
		sum=a[left];
		besti=left;
		bestj=right;
	}
	
	else{
		mid=(left+right)/2;
		leftsum=maxfind(left,mid);//对左边进行递归
		rightsum=maxfind(mid+1,right);//对右边进行递归
	
	//求解左子序列
	s1=0; lefts= 0;//s1为左边数字加和最大值,lefts为左边数字的加和
	for (int i=mid; i>=left; i--)//要从中间向两边计算
		{
			lefts+=a[i];//累加
			if (lefts>s1)//每加一次若大于上一次加和,则更新s1的值并记录起始地址
			{
				besti=i;
				s1=lefts;
			}
		}
	//求解右子序列
	s2 = 0; rights= 0;//s2为左边数字加和最大值,rights为左边数字的加和
	for (int j=mid+1; j<=right;j++)//同理
		{
			rights+=a[j];
			if (rights>s2)
			{
				bestj=j;
				s2=rights;
			}
		}
	
		midsum = s1+s2;//中间部分的最大子段和等于两边的最大值相加
		
		if (midsum < leftsum)//谁大选谁
		{
			sum =leftsum;
		}
		else if (midsum < rightsum)
		{
			sum = rightsum;
		}
		else
		{
			sum = midsum;
		}
	
	}
		if(sum>0)//正的返回sum否则返回0
		return sum;
		else return 0;
	}
	int main()
{
	int n,sum=0;
	
//	freopen("input.txt","r",stdin) ;
	cin>>n;
	
	for(int i=0;i<n;i++)
	cin>>a[i];
	int left=0,right=n-1;
	int res=maxfind(0,n-1);
	
	for(int i=besti;i<=bestj;i++)
	{
		cout<<a[i]<<" ";
	}
	cout<<"\n";
	cout<<res;
	return 0;
 }

时间复杂度为O(nlogn)

三.动态规划

基本思路:

1 找到第一个不为0的数作为起始下标i,依次往后加和,即b+=a[j](若b为非正数,则只赋值不加和,即b=a[j])

2  若b>sum,则更新sum的值,将可能变化的起始下标i(后面有更大的子段和是发生变化)赋给besti,当前的j赋给bestj作为终止下标,返回的sum值即为结果

代码:

//动态规划
#include<iostream>
using namespace std;
int a[100];
int besti,bestj;
int maxfind(int n)
{
	int b=0,sum=0;
	int i=0 ;
	for(int j=0;j<n;j++)
	{
		
		if(b>0)//数字为正数时开始往后加 
		{
			b+=a[j];
		}
		else//数字不为正数时,更新数组下标,b赋值为该非正数 
		{
			b=a[j];
			i=j;
		}
		if(b>sum)//更新sum值,并记录更新起始下标和终止下标
		{
			sum=b;
			besti=i;
			bestj=j;
		}
	}
	for(int i=besti;i<=bestj;i++)
	{
		cout<<a[i]<<" ";
	}
	return sum;
}
int main()
{
	int n,res;

	//freopen("input.txt","r",stdin) ;
	cin>>n;
	for(int i=0;i<n;i++)
	cin>>a[i];
	res=maxfind(n) ;
	cout<<"\n";
	cout<<res;
	return 0;
 } 

时间复杂度为O(n)

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值