详解Keras3.0 Ops API: NumPy ops(一)

本文介绍了Keras库中用于深度学习的三个核心运算函数:绝对值函数absolute()用于计算张量元素的绝对值,加法函数add()处理相同或不同形状张量的相加,append()则用于在给定轴上追加张量。通过实例展示了如何在Keras中使用这些函数进行数值操作。
摘要由CSDN通过智能技术生成

1、绝对值函数keras.ops.absolute()

#定义一个张量
x = keras.ops.convert_to_tensor([-10.2, 11.2])
xAbs = keras.ops.absolute(x)
print(xAbs)

打印结果:

array([10.2, 11.2], dtype=float32)

2、加法函数keras.ops.add(x1,x2)

示例1
#定义两个张量分别为x1、x2
x1 = keras.ops.convert_to_tensor([1, 4])
x2 = keras.ops.convert_to_tensor([5, 6])

x3 =  keras.ops.add(x1, x2)
print(x3)

打印结果:

array([6, 10], dtype=int32)
 示例2
 #定义两个不同形状的张量x1、x2
x1 = keras.ops.convert_to_tensor(
     [[5, 4],
     [5, 6]]
 )
x2 = keras.ops.convert_to_tensor([5, 6])

x3 = keras.ops.add(x1, x2)
print(x3)

打印结果:

array([[10 10]
       [10 12]], shape=(2, 2), dtype=int32)

 

3、append函数keras.ops.append(x1, x2, axis=None)

#定义两个张量
x1 = keras.ops.convert_to_tensor([1, 2, 3])
x2 = keras.ops.convert_to_tensor([[4, 5, 6], [7, 8, 9]])

#x1和x2必须具备兼容的形状
x3 = keras.ops.append(x1, x2)
print(x3)

打印结果:

array([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=int32)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

缘起性空、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值