计组总结2-原码、补码和反码

机器数

计算机中表示的带符号的二进制数成为“机器数”,机器数有3种表示方法:原码,补码和反码。

在刚刚接触这三种表示方法时我们可能只是简单的记所谓的口诀(比如说,原码转反码:符号位不变,其他位取反),但是并不知道其中的原理。下面总结以下原码、补码和反码的相关知识


原码表示法

机器数的最高位为符号位,0表示正数,1表示负数。

原码是最接近真值的一种表示形式,这使得原码的计算和我们熟知的十进制运算非常相似,只要运算的结果不产生溢出,原码与原码的运算仍为原码。

但是由于运算需要考虑符号位,符号位和数值位需要分开运算,在机器中进行运算比较复杂,他的便于理解性也成为其最大的缺点。

原码定义:
  • 整数部分

原码(整数)

  • 小数部分

原码(小数)

即:[X]原 = 符号位 + |X|

例:

X = +111.1011 —–> [X]原 = 0,111.1011 (符号位与数值位之间用,隔开)

X = - 101.0101 —–> [X]原 = 1,101.0101


原码0的表示

[X]原 = 0,000.0000 = + 0

[X]原 = 1,000.0000 = - 0

原码0的表示方法有两种


补码表示法

上面提到原码运算在机器中实现起来比较复杂,然而利用补码运算则可避免其缺点。

机器数的最高位为符号位,0表示正数,1表示负数。

补码定义:
  • 整数部分

补码(整数)

  • 小数部分

补码(小数)

即:[X]补 =( 2 * 符号位 + X ) mod 2^n

自认为最简单的理解是,与原码表示方法不同,补码符号位所表示的位带权值,如果符号位为1,则带负权。

例如:[X]补 = 1111 = -2^3 + 2^2 + 2^1 + 2^0 = -1


补码0的表示

[X]补 = 0,000.000 = + 0 = - 0

补码0的表示方法只有一种


补码的运算

当补码加法运算(减法运算实为加法运算+[-Y]补)的结果不超出机器范围时,可以得出以下重要结论

  • 用补码表示的两数进行加法运算,其结果仍为补码
  • [X+Y]补 = [X]补 + [Y]补
  • 符号位与数值位一样参与运算

反码表示法

机器数的最高位为符号位,0表示正数,1表示负数。

反码定义
  • 整数部分

反码(整数)

  • 小数部分

反码(小数)

即:[X]反 = (2^n - 1)* 符号位 + X mod (2^n -1)

反码0的表示

[X]反 = 0,000.0000 = + 0

[X]反 = 1,111.1111 = - 0

反码的运算

补码运算在最高位有进位时,要在最低位+1,要多进行一次加法运算,既增加了复杂性,又影响了速度,故很少在计算机中使用。

总结

理解二进制的表示方法至关重要。

在知晓了原码、补码和反码的定义之后,我们可以来验证之前口诀的正确性,并进行推导。

原码—–>反码 : 符号位不变,数值位取反

原码—–>补码 : 符号位不变,数值位取反加1

<think>嗯,用户现在问的是关于-5的原码反码补码。首先,我需要确认用户对计算机中数值表示的基础知识了解多少。可能他们刚开始学习计算机成原理或者相关的课程,所以需要简明扼要地解释这些概念。 用户之前的问题是关于二进制数10000011代表的是-3还是131,现在转向具体的数值-5的表示方式,说明他们可能在逐步学习不同数值的编码方法。需要确保解释清楚原码反码补码的区别,特别是补码在现代计算机中的重要性。 首先,原码是最直观的表示方法,符号位加上绝对值的二进制。对于-5来说,原码应该是最高位为1,后面跟着5的二进制。比如8位的话,就是10000101。这部分需要确认位数,通常8位是常见的例子,但可能用户需要明确位数的影响。 接下来是反码反码的规则是正数的反码原码相同,负数的反码则是符号位不变,其他位取反。这里需要注意的是,取反不包括符号位,所以对于-5的原码10000101,反码应该是11111010。但需要确认用户是否理解取反的操作,可能需要举例说明。 然后是补码补码反码加1。同样,正数的补码原码相同,负数的补码反码加1。因此,-5的反码11111010加1后得到补码11111011。这部分需要强调补码的作用,特别是在计算机中用于简化加减法运算,避免处理符号位的复杂性。 用户可能存在的误区包括:混淆原码反码补码的转换步骤,或者不理解为什么补码被广泛使用。需要指出补码的优点,比如消除+0-0的问题,以及简化硬件设。 另外,用户可能想知道为什么需要这些不同的表示方法。可能需要简单解释原码的问题,比如加减法需要不同的处理逻辑,而补码统一了加减法操作,只需要加法器即可完成。 还需要考虑用户是否了解二进制的基本操作,比如取反加1,可能需要用具体的例子来演示转换过程。例如,分步骤展示-5的原码反码再到补码的过程,确保每一步都清晰。 此外,用户可能没有明确说明使用的位数,比如是8位、16位还是其他位数。不同的位数会影响二进制表示的长度,但基本转换规则相同。在回答时应该假设常见的8位,但指出位数的影响,如更高位数会有更多前导1。 最后,总结三种表示方法的区别应用场景,强调补码在现代计算机中的重要性,帮助用户形成完整的理解框架。</think>好的!在计算机中,负数的表示方式有 **原码反码补码** 三种形式。下面以 **-5** 为例,详细介绍其二进制表示(假设使用 **8位** 二进制)。 --- ### **1. 原码(Sign-Magnitude)** - **规则**- 最高位为符号位(`0` 正,`1` 负)。 - 剩余位表示数值的绝对值。 - **-5 的原码**- 符号位:`1`(负数)。 - 绝对值部分:`5` 的二进制为 `0000101`。 - 合并后:`1 0000101` → **`10000101`**--- ### **2. 反码(1's Complement)** - **规则**- 正数的反码原码相同。 - 负数的反码符号位不变,数值位按位取反(`0`→`1`,`1`→`0`)。 - **-5 的反码**- 原码:`10000101`。 - 数值位取反:`0000101` → `1111010`。 - 合并后:`1 1111010` → **`11111010`**--- ### **3. 补码2's Complement)** - **规则**- 正数的补码原码相同。 - 负数的补码反码 + 1(溢出位舍弃)。 - **-5 的补码**- 反码:`11111010`。 - 反码 + 1: ```plaintext 11111010 + 1 --------- 11111011 ``` - 最终补码**`11111011`**--- ### **总结** | 表示方法 | -5 的二进制(8位) | 特点 | |----------|--------------------|----------------------------------| | 原码 | `10000101` | 符号位 + 绝对值,直观但运算复杂 | | 反码 | `11111010` | 符号位不变,数值位取反,存在 -0 | | 补码 | `11111011` | 反码 + 1,统一加减法,无 -0 问题 | --- ### **关键点** 1. **补码是现代计算机的通用标准**-补码表示负数,可以将减法转换为加法(例如 `A - B = A + (-B)`),简化硬件设2. **原码反码的局限性**- 原码反码中,`0` 有两种表示(`00000000` `10000000`),而补码只有唯一 `0`。 3. **扩展位数**- 若使用更多位数(如 16 位),-5 的补码为 `11111111 11111011`(符号位扩展到所有高位)。 --- ### **验证补码的正确性** 补码的验证可以通过 **补码补码 = 原码**- `11111011`(补码)→ 取反 → `10000100` → 加 1 → `10000101`(原码)。 验证成功! --- 如果还有其他问题,欢迎随时提问! 😊
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值