原码、反码、补码、1的补码、2的补码

计算机的有符号数涉及原码、反码、补码、1的补码(1’s complement/one’s complement)、2的补码(2’s complement/two’s complement)。最高位是符号位。最高位为“0”表示正数,最高位为“1”表示负数。计算机中保存的是补码。
反码就是1的补码,补码就是2的补码。

下面我们以8比特位的有符号数为例来说明。

原码

最高位表示符号位,剩余其它各位表示的值等于有符号数的绝对值。
2原码表示为:0000 0010
-2原码表示为:1000 0010

反码(即1的补码)

介绍

正数的反码:和原码相同。
负数的反码:原码的符号位不变,其它各位取反。

1的补码(1’s complement/one’s complement)就是指 反码。对于无符号的数,没有符号位,那么1的补码就是将二进制的0取反变为1,1取反变为0,例如对0011求1的补码结果为1100。

举例

2的反码:因为2的原码是0000 0010,反码和原码相同,也是0000 0010。
-2的反码:因为-2的原码是1000 0010,所以反码是1111 1101。

在1的补码概念中,有两个0的表示

在1的补码概念中,有两个0的表示:
+0:0000 0000
-0: 1111 1111

1的补码可表示的数的范围

对于n比特表示的有符号数,1的补码能表示的数的范围是从-(2^(n-1) - 1)到2^(n-1) - 1。
例如8位比特,1的补码的表示范围是-127到127。

有符号数的1的补码的加法

介绍

1的补码的加法有循环进位(end-around carry),即先进行二进制数的相加,然后再把超过MSB(最高有效位)的进位丢弃,最后再把该丢弃的进位加到结果的LSB(最低有效位)上。

两个正数相加

8 + 4 = 12
8是正数,1的补码和原码相同,为0000 1000,
4是正数,1的补码和原码相同,为0000 0100
两者相加过程:
0000 1000 + 0000 0100 = 0000 1100,
符号位是0,表示正数,结果表示12。

一个负数和一个正数相加,且负数的绝对值小于正数

8 + (-4) = 4
8是正数,1的补码和原码相同,为0000 1000,
-4是负数,1的补码为1111 1011
两者相加过程:
1)0000 1000 + 1111 1011 = 1 0000 0011, 产生了一个超过最高有效位的进位,先丢弃该进位
2)再将该丢弃的进位加到0000 0011的最低有效位上,即0000 0011 + 1 = 0000 0100
符号位是0,表示正数,结果表示4。

一个负数和一个正数相加,且负数的绝对值大于正数

(-8) + 4 = -4
-8是负数,1的补码为1111 0111,
4是正数,1的补码和原码相同,为0000 0100
两者相加过程:
1)1111 0111 + 0000 0100 = 1111 1011, 没有产生超过最高有效位的进位
符号位是1,表示负数,结果表示-4。

两个负数相加

(-8) + (-4) = -12
-8是负数,1的补码为1111 0111,
-4是负数,1的补码为1111 1011
两者相加过程:
1)1111 0111 + 1111 1011 = 1 1111 0010, 产生了一个超过最高有效位的进位,先丢弃该进位
2)再将该丢弃的进位加到1111 0010的最低有效位上,即1111 0010 + 1 = 1111 0011
符号位是1,表示负数,结果表示-12。

补码(即2的补码)

介绍

正数的补码:和原码相同。
负数的补码:原码的符号位不变,其它各位取反,然后再加1。其实就是反码再加1。
2的补码(2’s complement/two’s complement)就是指补码,是1的补码基础上再加1。

举例

2的补码:因为2的原码是0000 0010,补码和原码相同,也是0000 0010。
-2的补码:因为-2的原码是1000 0010,反码是1111 1101,然后再加1,即得补码为1111 1101 + 1 = 1111 1110。

在2的补码概念中,只有一个0的表示

在2的补码概念中,只有一个0的表示:0000 0000。
因为+0表示为0000 0000,-0表示为1111 1111 + 1 = 1 0000 0000,而我们是以8比特位表示一个数来举例的,现在相加后出现了9位,所以最高位丢弃,结果就是0000 0000,跟+0的表示相同。

2的补码可表示的数的范围

对于n比特表示的有符号数,2的补码能表示的数的范围是从-2^(n-1) 到2^(n-1) - 1。
例如8位比特,2的补码的表示范围是-128到127。

在2的补码加法中,不需要考虑循环进位

在2的补码加法中,不需要考虑循环进位的问题。如果遇到超过MSB(最高有效位)的进位,直接丢弃进位。

已知补码,求原码

如果已知补码,那么对补码再求一次补码,即得原码。所以可知:
1)如果补码的符号位为“0”,表示正数,那么原码等于补码。
2)如果补码的符号位为“1”,表示负数,那么对该补码再求补码就是原码。

举例:
已知补码是0000 0010,符号位为“0”,表示正数,原码等于补码,即0000 0010,表示的数值是2。
已知补码是1111 1110,符号位为“1”,表示负数,原码等于补码再求补码,即1111 1110的符号位保持不变,其它各位取反,然后再加1,得到原码为:1000 0001 + 1 = 1000 0010,表示的数值是-2。

<think>嗯,用户想学习或练习原码反码补码的概念及转换,需要提供练习题和解释转换方法。首先,我得回顾一下原码反码补码的基本知识,确保自己理解正确。原码是最直观的表示法,符号位加上绝对值的二进制形式。反码原码的符号位不变,其他位取反。补码则是反码1,用于解决减法运算的问题。 用户可能对转换步骤不太清楚,需要分步骤说明。例如,正数的原码反码补码都相同,而负数则不同。练习题部分,应该设计不同数值的例子,覆盖正数、负数以及零的情况。单选题也是一个好的练习形式,比如引用中的题目,关于±0编码相同的选项,正确答案是补码和移码,用户提供的引用[2]中提到选项C正确,需要确认这一点。 转换方法需要详细步骤,可能用户会混淆补码的转换过程,尤其是负数的情况。比如,-5的原码10000101反码11111010,补码11111011。确保每个步骤都清晰,特别是补码为什么要加1,以及补码如何简化运算。 还要注意用户提到的引用内容,引用[1]说明补码解决了减法问题,引用[2]的练习题涉及到不同编码中±0的表现。需要正确引用这些资料,并在解释中自然地加入引用标识。例如,在解释补码的作用时,引用[^1],而在讨论练习题时引用[^2]。 另外,用户可能需要实际应用的例子,比如计算机中如何使用补码进行运算,避免符号位的处理问题。练习题应该由易到难,先单个数的转换,再涉及运算,比如两个补码相加后的结果判断。 最后,要确保回答结构清晰,分点解释概念、转换步骤、练习题及答案,以及相关问题的扩展,帮助用户全面理解和练习。同时,检查LaTeX格式是否正确,所有数学表达式用$...$或$$...$$,避免格式错误。</think>### 原码反码补码的概念及转换方法 原码反码补码是计算机中表示有符号整数的三种方式,核心目标是简化运算(尤其是减法)。以下是详细解释和练习题: --- #### **1. 基本概念** 1. **原码** - **定义**:符号位(最高位)表示正负,0为正,1为负;其余位为数值的绝对值。 - **示例**:$+5$ 的原码为 $00000101$,$-5$ 的原码为 $10000101$。 2. **反码** - **正数**:与原码相同。 - **负数**:符号位不变,数值位按位取反。 - **示例**:$-5$ 的反码为 $11111010$。 3. **补码** - **正数**:与原码相同。 - **负数**:反码加 $1$。 - **示例**:$-5$ 的补码为 $11111011$。 --- #### **2. 转换方法** 1. **原码反码补码** - **正数**:原码 = 反码 = 补码。 - **负数**: - 原码符号位不变,数值位取反 → 反码。 - 反码加 $1$ → 补码。 - **示例**:$-3$ - 原码:$10000011$ - 反码:$11111100$ - 补码:$11111101$ 2. **补码原码** - **方法**:补码取反后加 $1$(与原码补码过程一致)。 - **示例**:补码 $11111101$ → 取反 $10000010$ → 加 $1$ → 原码 $10000011$(即 $-3$)。 --- #### **3. 练习题与解析** **题目1** 将 $-7$ 转换为8位原码反码补码。 - **原码**:$10000111$ - **反码**:$11111000$ - **补码**:$11111001$ **题目2**(引用题) 单选题:±0编码相同的是( )。 A. 原码补码 B. 反码补码 C. 补码和移码 D. 原码和移码 - **答案**:C - **解析**:补码和移码中,$+0$ 和 $-0$ 的表示均为全0(补码)或特定偏移值(移码)[^2]。 **题目3** 补码 $10101010$ 对应的原码是多少? - **步骤**:补码取反 → $01010101$,加 $1$ → $01010110$,符号位为负 → $-86$。 --- #### **4. 核心作用** 补码解决了原码反码中“减法需特殊处理符号位”的问题,使加减法统一为加法运算[^1]。例如: $$5 - 3 = 5 + (-3)_{\text{补码}}$$ 计算机中直接对补码相加即可得到正确结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值