朴素贝叶斯原理

(1)全概率公式

  如果事件组 B 1 , B 2 , … B_1,B_2,\dots B1,B2,满足:

  • B 1 , B 2 , … B_1,B_2,\dots B1,B2,两两互斥,即 B i ∩ B j = ∅ B_i ∩ B_j = \emptyset BiBj= i ≠ j i≠j i̸=j i , j = 1 , 2 , … i,j=1,2,\dots i,j=1,2,,且 P ( B i ) > 0 , i = 1 , 2 , … P(B_i)>0,i=1,2,\dots P(Bi)>0,i=1,2,
  • B 1 ∪ B 2 ∪ ⋯ = Ω B_1∪B_2∪\dots=Ω B1B2=Ω ,则称事件组 B 1 , B 2 , … B_1,B_2,\dots B1,B2,是样本空间 Ω Ω Ω的一个划分

  设 B 1 , B 2 , … B_1,B_2,\dots B1,B2,是样本空间 Ω Ω Ω的一个划分, A A A为任一事件,则:
P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) P(A)=\sum\limits_{i=1}^\infty P(B_i)P(A|B_i) P(A)=i=1P(Bi)P(ABi)
该式即为全概率公式。

(2)贝叶斯公式

  与全概率公式解决的问题相反,贝叶斯公式建立在条件概率的基础上寻找事件发生的原因(即大事件 A A A已经发生的条件下,分割中的小事件 B i B_i Bi的概率),设 B 1 , B 2 , … B_1,B_2,\dots B1,B2,是样本空间 Ω Ω Ω的一个划分,则对任一事件 A ( P ( A ) > 0 ) A(P(A)>0) A(P(A)>0),有
P ( B i ∣ A ) = P ( B i , A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) P(B_i|A) = \dfrac{P(B_i,A)}{P(A)} = \dfrac{P(A|B_i)P(B_i)}{\sum_{j=1}^n P(A|B_j)P(B_j)} P(BiA)=P(A)P(Bi,A)=j=1nP(ABj)P(Bj)P(ABi)P(Bi)
上式为贝叶斯公式。 B i B_i Bi 常被视为导致试验结果 A A A发生的”原因“, P ( B i ) ( i = 1 , 2 , …   ) P(B_i)(i=1,2,\dots) P(Bi)(i=1,2,)表示各种原因发生的可能性大小,故称先验概率 P ( B i ∣ A ) ( i = 1 , 2 , …   ) P(B_i|A)(i=1,2,\dots) P(BiA)(i=1,2,)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率

(3)分类任务表达式

贝叶斯公式可以转为分类任务表达式:
P ( 类 别 i ∣ 特 征 j = 1 , 2 , … ) = P ( 特 征 j = 1 , 2 , … ∣ 类 别 i ) P ( 类 别 i ) P ( 特 征 j = 1 , 2 , … ) P(类别_i|特征_{j=1,2,\dots})=\dfrac{P(特征_{j=1,2,\dots}|类别_i)P(类别_i)}{P(特征_{j=1,2,\dots})} P(ij=1,2,)=P(j=1,2,)P(j=1,2,i)P(i)

(4)朴素贝叶斯

  朴素贝叶斯对条件概率分布作了条件独立性假设,具体的,条件独立性假设是:
P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , X ( 2 ) = x ( 2 ) , … , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) \begin{aligned} P(X=x|Y=c_k) &= P(X^{(1)}=x^{(1)},X^{(2)}=x^{(2)},\dots,X^{(n)}=x^{(n)}|Y=c_k) \\ &=\prod_{j=1}^n P(X^{(j)}=x^{(j)}|Y=c_k) \end{aligned} P(X=xY=ck)=P(X(1)=x(1),X(2)=x(2),,X(n)=x(n)Y=ck)=j=1nP(X(j)=x(j)Y=ck)
结合后验概率根据贝叶斯定理得:
P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) P ( X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) \begin{aligned} P(Y=c_k|X=x) &= \dfrac{P(X=x|Y=c_k)P(Y=c_k)}{P(X=x)}\\ &=\dfrac{P(X=x|Y=c_k)P(Y=c_k)}{\sum_k P(X=x|Y=c_k)P(Y=c_k)} \end{aligned} P(Y=ckX=x)=P(X=x)P(X=xY=ck)P(Y=ck)=kP(X=xY=ck)P(Y=ck)P(X=xY=ck)P(Y=ck)
两式结合,得朴素贝叶斯得基本公式:
P ( Y = c k ∣ X = x ) = P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) ∑ k P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) , k = 1 , 2 , … , K P(Y=c_k|X=x) = \dfrac{P(Y=c_k)\prod_jP(X^{(j)}=x^{(j)}|Y=c_k)}{\sum_kP(Y=c_k) \prod_jP(X^{(j)}=x^{(j)}|Y=c_k)},k=1,2,\dots,K P(Y=ckX=x)=kP(Y=ck)jP(X(j)=x(j)Y=ck)P(Y=ck)jP(X(j)=x(j)Y=ck),k=1,2,,K
因为分母对于 c k c_k ck都是相同得,于是,朴素贝叶斯分类器表示为
y = f ( x ) = arg ⁡ max ⁡ c k P ( Y = c k ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c k ) y=f(x)=\mathop{\arg\max}\limits_{c_k} P(Y=c_k)\prod_jP(X^{(j)}=x^{(j)}|Y=c_k) y=f(x)=ckargmaxP(Y=ck)jP(X(j)=x(j)Y=ck)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值