【数学建模】二手房房价影响因素分析(描述性统计+推断统计综合应用、线性回归预测分析)

本文通过数学建模分析二手房房价影响因素,运用Python进行线性回归预测,包括单变量和多变量回归,探讨了变量筛选方法,如向前法、向后法和逐步法。通过对描述性统计和推断统计的结合,建立预测模型,研究了房屋面积、区域、地铁、学区等因素对房价的影响。模型创建过程中涉及数据抽样、编码和模型诊断,以确保模型的准确性和有效性。
摘要由CSDN通过智能技术生成

手动反爬虫,禁止转载:原博地址 https://blog.csdn.net/lys_828/article/details/116307838

 知识梳理不易,请尊重劳动成果,文章仅发布在CSDN网站上,在其他网站看到该博文均属于未经作者授权的恶意爬取信息

1 背景与目标方针

前提背景

前面有了描述性统计对数据的分布和占比有所了解,并且确定了有关的字段之间是相关联的,那么接下的任务就是找到这个关联的式子,得到我们熟悉的那个等式:y = f(x)

函数等式关系

目前遇到的函数等式关系,可以归纳为三类:

  • y =
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lys_828

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值