06-图3 六度空间 (30分)

“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。


图1 六度空间示意图

“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。

假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。

输入格式:

输入第1行给出两个正整数,分别表示社交网络图的结点数NN1<N\le 10^41<N104,表示人数)、边数MM\le 33\times N33×N,表示社交关系数)。随后的MM行对应MM条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到NN编号)。

输出格式:

对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。

输入样例:

10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

输出样例:

1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%

bfs,开一个layer数组记录每个结点的深度,也可以用结构体。每次搜索时都要初始化。

注意:

1.距离不超过6的结点包括最初的源点。

2.% 用  %%输出。 


#include<stdio.h>
#include<queue>
#include<vector>
using namespace std;
int n,m,cou;
vector<int>adj[10001];
int inq[10001];
int layer[10001];
void init(){
	int i,j;
	cou=1;//自己 
	for(i=1;i<=n;i++){
		inq[i]=0;
		layer[i]=0;
	}
}
void bfs(int s){
	int i;
	inq[s]=1;
	layer[s]=0;
	queue<int>q;
	q.push(s);
	while(!q.empty()){
		int head=q.front();
		q.pop();
		for(i=0;i<adj[head].size();i++){
			if(inq[adj[head][i]]==0){
				layer[adj[head][i]]=layer[head]+1;
				if(layer[adj[head][i]]<=6){
					q.push(adj[head][i]);
					inq[adj[head][i]]=1;
					cou++;
				}
			}
		}
	}
}
int main(){
	int i,j,c1,c2;
	scanf("%d %d",&n,&m);
	for(i=0;i<m;i++){
		scanf("%d %d",&c1,&c2);
		adj[c1].push_back(c2);
		adj[c2].push_back(c1);
	}
	for(i=1;i<=n;i++){
		init();
		bfs(i);
		printf("%d: %.2lf%%\n",i,(double)cou/n*100);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值