“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。
图1 六度空间示意图
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤104,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。
输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。
输入样例:
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%
bfs,开一个layer数组记录每个结点的深度,也可以用结构体。每次搜索时都要初始化。
注意:
1.距离不超过6的结点包括最初的源点。
2.% 用 %%输出。
#include<stdio.h>
#include<queue>
#include<vector>
using namespace std;
int n,m,cou;
vector<int>adj[10001];
int inq[10001];
int layer[10001];
void init(){
int i,j;
cou=1;//自己
for(i=1;i<=n;i++){
inq[i]=0;
layer[i]=0;
}
}
void bfs(int s){
int i;
inq[s]=1;
layer[s]=0;
queue<int>q;
q.push(s);
while(!q.empty()){
int head=q.front();
q.pop();
for(i=0;i<adj[head].size();i++){
if(inq[adj[head][i]]==0){
layer[adj[head][i]]=layer[head]+1;
if(layer[adj[head][i]]<=6){
q.push(adj[head][i]);
inq[adj[head][i]]=1;
cou++;
}
}
}
}
}
int main(){
int i,j,c1,c2;
scanf("%d %d",&n,&m);
for(i=0;i<m;i++){
scanf("%d %d",&c1,&c2);
adj[c1].push_back(c2);
adj[c2].push_back(c1);
}
for(i=1;i<=n;i++){
init();
bfs(i);
printf("%d: %.2lf%%\n",i,(double)cou/n*100);
}
}