pyecharts可视化——折线图

本文详细介绍了使用Pyecharts库在Python中创建基础折线图、多线折线图、线样式配置、平滑曲线、连接空数据、阶梯图、面积图(基础与堆叠)、以及添加标记点和标记线的方法。
摘要由CSDN通过智能技术生成

目录

基础折线图
多条线折线图
平滑曲线折线图
连接空数据(折线图)
阶梯图
基础面积图
堆叠面积图


pyecharts——配置项学习


基础折线图

在这里插入图片描述

  • 代码如下
## 基础折线图
from pyecharts.charts import Line # 导入Line库 
from  pyecharts.faker  import  Faker
line = (
    Line()
    .add_xaxis(Faker.choose()) # x轴
    .add_yaxis(
        "商家A",    # 图例
        Faker.values(), # 数据
    )
).render("基础折线图.html")

多条线折线图

在这里插入图片描述

  • 代码如下
from pyecharts.charts import Line 
from  pyecharts.faker  import  Faker
## 多条线折线图
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A",Faker.values()) # y轴
    .add_yaxis("商家B",Faker.values()) # 多线重叠
    .set_global_opts(
        title_opts=opts.TitleOpts(title="多条折线重叠")
    )
).render("多条线折线图.html")

线样式配置项

在这里插入图片描述

  • 代码如下
from pyecharts.charts import Line 
from pyecharts.faker import Faker

line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A",Faker.values(),
    )
    .set_series_opts(
        #LineStyleOpts: 线样式配置项
        linestyle_opts = opts.LineStyleOpts(
        	width = 10,   # 线宽
            color = "green",  # 线颜色
            type_ = "dashed",   # solid实线 | dashed虚线 | dotted点线
        ),

    )
).render("线样式配置项.html")

平滑曲线折线图

在这里插入图片描述

  • 代码如下
from pyecharts.charts import Line 
from  pyecharts.faker  import  Faker
## 平滑曲线折线图
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A",Faker.values(),is_smooth=True) # 平滑曲线  
).render("平滑曲线折线图.html")

连接空数据(折线图)

在这里插入图片描述

  • 代码如下
from pyecharts.charts import Line 
from  pyecharts.faker  import  Faker
## 连接空数据(折线图)
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A",[10,20,30,None,50,60,70],is_connect_nones=True) # is_connect_nones=True 连接空数据
    .add_yaxis("商家B",[1,5,10,None,20,25,30])
    .set_global_opts(title_opts=opts.TitleOpts(title="连接空数据"))
).render("连接空数据(折线图).html")

阶梯图

在这里插入图片描述

  • 代码如下
from pyecharts.charts import Line 
from  pyecharts.faker  import  Faker
## 阶梯图
line=(
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis(series_name="数据1",y_axis=Faker.values(), is_step=True) # is_step=True阶梯图
    .set_global_opts(title_opts=opts.TitleOpts(title="Line-阶梯图"))
).render("阶梯图.html")

基础面积图

在这里插入图片描述

  • 代码如下
## 基础面积图
from pyecharts.charts import Line
from  pyecharts.faker  import  Faker
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis(
    	"商家A",     # 图例
       	Faker.values(),  # 数据
        ### AreaStyleOpts:面积设置
        areastyle_opts=opts.AreaStyleOpts(opacity=0.5),  # opacity: 透明度(必须设置)
            )
).render("面积图.html")

堆叠面积图

在这里插入图片描述

  • 代码如下
## 堆叠面积图
from pyecharts.charts import Line
from  pyecharts.faker  import  Faker
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis(
                "商家A",     # 图例
                Faker.values(),  # 数据
                is_smooth=True,  # is_smooth平滑曲线 
                ### AreaStyleOpts:面积设置
                areastyle_opts=opts.AreaStyleOpts(opacity=0.5),  # opacity: 透明度(必须设置)
        )
    .add_yaxis(
                "商家B",
                Faker.values(),
                ### AreaStyleOpts:面积设置
                areastyle_opts=opts.AreaStyleOpts(opacity=0.5), # opacity: 透明度(必须设置)
        )
    .set_global_opts(
        title_opts = opts.TitleOpts(title = "堆叠面积图"), 
        ### boundary_gap = False: 图例与坐标轴间没有间隙 True|False
        #xaxis_opts = opts.AxisOpts(type_ = "category", boundary_gap = False),
        )
).render("堆叠面积图.html")

标记点

在这里插入图片描述

  • 标记点
## 标记点
from pyecharts.charts import Line # 导入Line库 
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A",Faker.values())
    .set_series_opts(
        ## MarkPointOpts: 标记点
        markpoint_opts = opts.MarkPointOpts(
            data = [
                ## type_:特殊标记类型,min, max, average平均值
                ## symbol: 特殊标记类图型更改 
                # circle 圆形
                # rect 矩形
                # roundRect 圆角矩形
                # triangle 三角形
                # diamond 菱形
                # arrow 飞镖形
                ## symbol_size: 标记图形大小
                opts.MarkPointItem(type_= "max",symbol = "arrow",symbol_size = 30),
                opts.MarkPointItem(type_= "min",symbol = "arrow",symbol_size = 30),
                ]
            )
        )
).render("标记点.html")

标记线

在这里插入图片描述

  • 代码如下
## 标记线
from pyecharts.charts import Line # 导入Line库 
line = (
    Line()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A",Faker.values(),
    )
    .set_series_opts(
        ## MarkLineOpts: 标记线
        markline_opts = opts.MarkLineOpts(
            data = [opts.MarkLineItem(
                name = "平均值",  # 标注名称
                # 特殊的标注类型,用于标注最大值最小值等。可选:
                # 'min' 最大值、'max' 最大值 、'average' 平均值。
                type_ = "average",
                )
                ],
            label_opts = opts.LabelOpts(color = "red")
        )
    )
).render("标记线.html")
### 回答1: 在使用 pyecharts 绘制折线图时,如果不想显示标签,可以在添加标签的地方使用 `is_show=False` 参数。 例如: ```python from pyecharts import Line line = Line() line.add("商家A", attr, v1, is_label_show=False) line.show_config() line.render() ``` 在这个例子中,我们使用了 `is_label_show=False` 参数来关闭标签的显示。 注意:在使用 pyecharts 绘制折线图时,需要提供坐标轴的标签列表和对应的数据列表。你需要使用 `add()` 方法将数据添加到图表中。 希望这能帮到你! ### 回答2: pyecharts折线图不显示标签可能是因为标签的显示设置被关闭或者默认设置为隐藏。 首先,我们需要确认是否在折线图的配置中设置了`line_label_show`属性。如果没有设置该属性或者将其设置为`False`,则标签将不会显示。检查代码中的配置部分,将`line_label_show`属性设置为`True`,以确保标签显示。 其次,我们还需要确认其他可能的设置是否影响了标签的显示。可以检查配置中的其他属性,如`line_label_position`,确保设置为正确的位置。例如,可以将其设置为`'top'`或`'right'`,以将标签放置在折线图的顶部或右侧。同时,还可以通过设置`line_label_font_size`属性来调整标签的字体大小。 最后,如果以上方法都没有成功显示标签,可能是因为数据量过少或者数据值太小,导致标签无法正常显示。可以尝试增加数据量或者调整数据值的大小,以确保标签能够显示出来。 总结来说,解决pyecharts折线图不显示标签的问题,需要确保在配置中设置了`line_label_show`属性为`True`,检查其他可能影响标签显示的属性的设置,并适当调整数据量或数据值的大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lyx52Hertz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值