048python写字笔画顺序识别检测笔顺是否有误检测

本文介绍了利用卷积神经网络(CNN)模型进行汉字笔画顺序的识别和检测,涉及AlexNet到Swin Transformer等多种模型。同时提到了目标检测的yolo系列和图像分割的Unet等技术。提供了048期的B站视频和代码资源,用于数据集处理、模型训练及文字识别界面的实现,以检查汉字笔顺是否正确。
摘要由CSDN通过智能技术生成

​卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型
目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等
图像分割一般是Unet、mask-rcnn、PSPnet、yolov5-segment等

demo仓库和视频演示找048期:

https://space.bilibili.com/124080712?spmidfrom=333.999.0.0

效果展示图如下:

代码文件展示如下:

运行01数据集文本生成制作.py可以读取图片路径保存再txt文本中,

运行02CNN迁移学习训练模型.py可以对txt文本中的图片路径读取并训练模型,

运行03文字识别界面程序.py可以生成一个可视化的界面,通过识别汉字顺序是否有误。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值