RAG必读书籍推荐:从入门到进阶,死磕这本书就够了(附PDF)

如果你不知道RAG怎么学,死磕这本书就够了!!

一、内容简介:

这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。

在这里插入图片描述
在这里插入图片描述

这本《大模型RAG实战-RAG原理、应用与系统构建》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:大模型RAG实战-RAG原理、应用与系统构建》免费分享(安全链接,放心点击)]👈

二、章节介绍:

第一章:介绍了RAG的发展
第二章:介绍了Transformer相关的基本原理,包括embedding、编码器、解码器等
第三章:介绍了RAG环节里比较核心的文本向量化模型。首先介绍了和文本向量化模型比较相关的基础概念。然后介绍了一些稠密向量检索模型和稀疏检索模型。
第四章:这一张比较琐碎,内容也比较多:
(1)在RAG场景下的提示词技巧。
(2)文本切块方法,包含基于规则的以及基于模型的。
(3)向量数据库的基本原理以及一些开源向量数据库
(4)召回环节优化策略:短文本全局信息增强、上下文扩充、重排序等。
(5)召回环节的评估以及模型回答评估
(6)RAG场景下的LLM优化,包括微调FLARE、Self-RAG等。
第五章:介绍了RAG的范式演变,从基础的RAG系统开始到agent再到多模态RAG
第六章:介绍了RAG系统相关的训练内容。比如,进行序贯训练以及联合训练。
第七章:介绍了如何基于langchain构建一个简单的RAG系统。包括langchain基础模块介绍,以及构建一个ChatPDF可视化应用。
第八章:本章从实战角度出发,讲解了向量化模型和LLM的选型、训练数据构造、训练方法等。

三、通过阅读本书,你将掌握以下知识:

  • 透彻理解RAG的召回和生成模块算法
  • 高级RAG系统的技巧
  • RAG系统的各种训练方式方法
  • 深入了解RAG的范式变迁
  • 实战0基础搭建RAG系统
  • 实战高级RAG系统微调与流程搭建
    在这里插入图片描述

四、书籍目录:

第一部分 基础

第1章 RAG与大模型应用 2
  • 1.1 大模型应用的方向:RAG 2
  • 1.2 为什么需要RAG 6
  • 1.3 RAG的工作流程 9
  • 1.4 RAG的优缺点 12
  • 1.5 RAG的使用场景 14
  • 1.6 RAG面临的挑战 16
  • 1.7 本章小结 19
第2章 语言模型基础 20
  • 2.1 Transformer 20
  • 2.2 自动编码器 41
  • 2.3 自回归模型 47
  • 2.4 本章小结 56
第3章 文本召回模型 58
  • 3.1 文本召回模型基础 58
  • 3.2 稠密向量检索模型 61
  • 3.3 稀疏向量检索模型 67
  • 3.4 重排序模型 71
  • 3.5 本章小结 72

第二部分 原理

第4章 RAG核心技术与优化方法 74
  • 4.1 提示词工程 74
  • 4.2 文本切块 83
  • 4.3 向量数据库 87
  • 4.4 召回环节优化 94
  • 4.5 效果评估 107
  • 4.6 LLM能力优化 115
  • 4.7 本章小结 120
第5章 RAG范式演变 121
  • 5.1 基础RAG系统 121
  • 5.2 先进RAG系统 125
  • 5.3 大模型主导的RAG系统 127
  • 5.4 多模态RAG系统 131
  • 5.5 本章小结 135###第6章 RAG系统训练 136
  • 6.1 RAG系统的训练难点 136
  • 6.2 训练方法 138
  • 6.3 独立训练 138
  • 6.4 序贯训练 139
  • 6.5 联合训练 143
  • 6.6 本章小结 149

第三部分 实战

第7章 基于LangChain实现RAG应用 152
  • 7.1 LangChain基础模块 152
  • 7.2 基于LangChain实现RAG 156
  • 7.3 基于Streamlit搭建一个ChatPDF可视化应用 158
  • 7.4 本章小结 161
第8章 RAG系统构建与微调实战 162
  • 8.1 向量模型构建 162
  • 8.2 大模型指令微调 175
  • 8.3 复杂问题处理 179
  • 8.4 本章小结 203

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这本《大模型RAG实战-RAG原理、应用与系统构建》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:大模型RAG实战-RAG原理、应用与系统构建》免费分享(安全链接,放心点击)]👈

内容概要:本文系统性地概述了2024年RAG (Retrieval-Augmented Generation) 技术的发展现状及其应用案例。文章从技术原理、性能优化策略,到实际应用场景如腾讯大模型业务落地、京东电商搜索优化、小红书的生成式检索等,展示了RAG在多个领域的重要作用及成效。文章还探讨了知识图谱和Agent技术在RAG系统中的应用以及语音合成技术和Elasticsearch的集成优化,强调了RAG在解决复杂知识问答和企业级搜索任务中的优势,并指出了未来的发展方向和技术瓶颈。最后,文章提出了腾讯云的一站式RAG解决方案,以及在实际项目中对RAG方案的具体实践优化。 适合人群:对RAG技术感兴趣的工程师和研究人员,特别是关注其在电商、社交媒体、搜索等领域的应用及优化。 使用场景及目标:适用于希望深入了解和应用RAG技术的企业IT部门,研究机构及高校师生。通过学习本手册,用户可以获得对新一代智能搜索和复杂语义推理系统的深刻理解,并探索如何在实际工作中采用相关技术解决问题。此外,对于那些正在评估或计划引入RAG系统的公司和个人来说,本文也提供了宝贵的参考案例和技术细节。 其他说明:本文不仅涉及了RAG的理论层面探讨,还包括大量的实践经验总结,例如知识图谱增强、性能提升措施以及如何在资源有限的情况下部署大规模的向量搜索系统。同时介绍了TransLLM在内的多个具体应用案例,揭示了RAG其他前沿技术相结合所带来的巨大潜力和发展前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值