多重背包

有N中物品和一个容量为V的背包,第i种物品最多有Mi件可用,每件耗费的空间是ci,价值wi,求解将哪些物品放入背包可使这些物品的耗费空间总和不超过背包容量且价值总和最大。

设f[i,j]表示用了前i种物品填满容量为j的背包后,最多还剩下几个第i中物品可用,如果f[i,j]=-1,则说明这种状态不可行,若可行应满足0<=f[i,j]<=Mi。

o(vn):

    f[0,1...v]=-1

     f[0,0]=0;

    for(i=1;i<=n;i++)

     for(j=0;j<=v;j++)

       if(f[i-1][j]>=0)

           f[i][j]=amai;

             else

               f[i][j]=-1;

       for(j=0;j<=V-ci;j++)

          if(f[i][j]>0)

           f[i][j+ci]=max(f[i][j+ci],f[i][j]-1);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值