深度学习入门-5(卷积神经网络基础,LeNet,卷积神经网络进阶)

一、卷积神经网络基础

1、卷积层基础概念
(1)二维互相关

二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。

在这里插入图片描述
详细图解:
在这里插入图片描述

(2)二维卷积层

二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。

(3)互相关运算与卷积运算

卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

(4)特征图与感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响x元素的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x的感受野(receptive field)。

以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×2的输出记为Y,将Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

(5)填充与步幅

填充和步幅是卷积层的两个超参数,它们可以对给定形状的输入和卷积核改变输出形状

ⅰ) 填充

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),下图里是在原输入高和宽的两侧分别添加了值为0的元素,即黄色部分是原输入,绿色为padding部分,示例在输入的高和宽两侧分别填充了0元素后进行二维互相关计算。
在这里插入图片描述
在这里插入图片描述

ⅱ) 步幅

在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,下图展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。
在这里插入图片描述
在这里插入图片描述

(6)多输入通道和多输出通道

之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是h和w(像素),那么它可以表示为一个 3 × h × w 的多维数组,我们将大小为3的这一维称为通道(channel)维

ⅰ) 多输入通道

卷积层的输入可以包含多个通道,下图展示了一个含2个输入通道的二维互相关计算的例子
在这里插入图片描述
假设输入数据的通道数为cᵢ,卷积核形状为kₕ×kₘ,我们为每个输入通道各分配一个形状为kₕ×kₘ的核数组,将cᵢ个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。我们把cᵢ个核数组在通道维上连结,即得到一个形状为cᵢ×kₕ×kₘ的卷积核。

ⅱ) 多输出通道

卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为cᵢ和cₒ,高和宽分别为kₕ和kₘ。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为cᵢ×kₕ×kₘ的核数组,将它们在输出通道维上连结,卷积核的形状即cₒ×cᵢ×kₕ×kₘ。

对于输出通道的卷积核,我们提供这样一种理解,一个cᵢ×kₕ×kₘ的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的cᵢ×kₕ×kₘ的核数组,不同的核数组提取的是不同的特征。

ⅲ) 1x1卷积层

只做通道维上的计算,改变输出通道数。

我们通常称形状为1 ×1 的卷积核的卷积运算为 1×1卷积,称包含这种卷积核的卷积层为 1×1 卷积层。下图展示了使用输入通道数为3、输出通道数为2的 1×1卷积核的互相关计算。
在这里插入图片描述
1×1卷积核可在不改变高宽的情况下,调整通道数。1×1 卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么1×1卷积层的作用与全连接层等价。

2、卷积层与全连接层的对比

二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:

一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。

二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为(cᵢ,cₒ,h,w)的卷积核的参数量是cᵢ×cₒ×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是(c₁,h₁,w₁)和(c₂,h₂,w₂),如果要用全连接层进行连接,参数数量就是c₁×c₂×h₁×w₁×h₂×w₂。使用卷积层可以以较少的参数数量来处理更大的图像。

3、池化
二维池化层

池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图下展示了池化窗口形状为2×2的最大池化。
在这里插入图片描述
二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为p×q的池化层称为p×q池化层,其中的池化运算叫作p×q池化。

池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。

在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。

4、PyTorch代码实现
(1)卷积层的实现

我们使用Pytorch中的nn.Conv2d类来实现二维卷积层,主要关注以下几个构造函数参数:

  • in_channels (python:int) – Number of channels in the input imag
  • out_channels (python:int) – Number of channels produced by the convolution
  • kernel_size (python:int or tuple) – Size of the convolving kernel
  • stride (python:int or tuple, optional) – Stride of the convolution. Default: 1
  • padding (python:int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0
  • bias (bool, optional) – If True, adds a learnable bias to the output. Default: True

forward函数的参数为一个四维张量,形状为(N,Cᵢₙ,Hᵢₙ,Wᵢₙ),返回值也是一个四维张量,形状为(N,Cₒᵤₜ,Hₒᵤₜ,Wₒᵤₜ),其中N是批量大小,C,H,W分别表示通道数、高度、宽度。

代码:

X = torch.rand(4, 2, 3, 5)
print(X.shape)

conv2d = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=(3, 5), stride=1, padding=(1, 2))
Y = conv2d(X)
print('Y.shape: ', Y.shape)
print('weight.shape: ', conv2d.weight.shape)
print('bias.shape: ', conv2d.bias.shape)

运行结果:
torch.Size([4, 2, 3, 5])
Y.shape: torch.Size([4, 3, 3, 5])
weight.shape: torch.Size([3, 2, 3, 5])
bias.shape: torch.Size([3])

代码详解:
在这里插入图片描述
在这里插入图片描述

(2)池化的实现

使用Pytorch中的nn.MaxPool2d实现最大池化层,关注以下构造函数参数:

  • kernel_size – the size of the window to take a max over
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on both sides

forward函数的参数为一个四维张量,形状为(N,Cᵢₙ,Hᵢₙ,Wᵢₙ),返回值也是一个四维张量,形状为(N,Cₒᵤₜ,Hₒᵤₜ,Wₒᵤₜ),其中N是批量大小,C,H,W分别表示通道数、高度、宽度。

代码:

X = torch.arange(32, dtype=torch.float32).view(1, 2, 4, 4)
pool2d = nn.MaxPool2d(kernel_size=3, padding=1, stride=(2, 1))
Y = pool2d(X)
print(X)
print(Y)

详解
在这里插入图片描述

5、练习

1、假如你用全连接层处理一张256×256的彩色(RGB)图像,输出包含1000个神经元,在使用偏置的情况下,参数数量是:
答:
图像展平后长度为3 × 256 × 256,权重参数和偏置参数的数量是3 × 256 × 256 ×1000 + 1000 =196609000。

2、假如你用全连接层处理一张256 × 256的彩色(RGB)图像,卷积核的高宽是3 × 3,输出包含10个通道,在使用偏置的情况下,这个卷积层共有多少个参数:
答:
输入通道数是3,输出通道数是10,所以参数数量是10×3×3×3+10=280。

3、conv2d = nn.Conv2d(in_channels=3, out_channels=4, kernel_size=3, padding=2),输入一张形状为3×100×100的图像,输出的形状为:
答:
out_channels=4即输出通道数是4, padding=2则上下两侧总共填充4行,kernel_size=3即卷积核高度是3,所以输出的高度是104 - 3 + 1=102104−3+1=102,宽度同理可得。

二、LeNet模型

1、全连接层与卷积层的对比
全连接层
  • 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
  • 对于大尺寸的输入图像,使用全连接层容易导致模型过大。
卷积层
  • 卷积层保留输入形状。
  • 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。

LeNet同时使用卷积层与全连接层

2、LeNet简介

LeNet分为卷积层块和全连接层块两个部分,通过交替使用卷积层和最大池化层后接全连接层来进行图像分类,是早期用于识别手写输入图片的神经网络。

在这里插入图片描述
在LeNet模型中,90%以上的参数集中在全连接层块。

LeNet在连接卷积层块和全连接层块时,需要做一次展平操作。

使用形状为2×2,步幅为2的池化层,会将高和宽都减半。

卷积神经网络通过使用滑动窗口在输入的不同位置处重复计算,减小参数数量。

在通过卷积层或池化层后,输出的高和宽可能减小,为了尽可能保留输入的特征,可以在减小高宽的同时增加通道数。

卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。

卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用 5 × 5 的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。

全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

三、卷积神经网络进阶

LeNet在大的真实数据集上的表现并不尽如⼈意。

  1. 神经网络计算复杂。
  2. 还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。

下面介绍4个改进的卷积神经网络:AlexNet、VGG、NiN和GoogLeNet

1、AlexNet

首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。

AlexNet特征:

  1. 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  2. 将sigmoid激活函数改成了更加简单的ReLU激活函数。
  3. 用Dropout来控制全连接层的模型复杂度。
  4. 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

在这里插入图片描述

2、VGG(使用重复元素的网络)

AlexNet没有提供规则设计新网络,VGG提供了VGG block,通过重复堆叠VGG block,最后接上全连接层,组成VGG网络。

VGG:通过重复使⽤简单的基础块来构建深度模型。

Block:数个相同的填充为1、窗口形状为 3×3 的卷积层,接上一个步幅为2、窗口形状为 2×2 的最大池化层。

卷积层保持输入的高和宽不变,而池化层则对其减半。

在这里插入图片描述

3、NiN(⽹络中的⽹络)

LeNet、AlexNet和VGG:先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果。

NiN:串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。

⽤了输出通道数等于标签类别数的NiN块,然后使⽤全局平均池化层对每个通道中所有元素求平均并直接⽤于分类。
在这里插入图片描述
1×1卷积核作用:

  1. 放缩通道数:通过控制卷积核的数量达到通道数的放缩。
  2. 增加非线性。1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性。
  3. 计算参数少

NiN重复使⽤由卷积层和代替全连接层的1×1卷积层构成的NiN块来构建深层⽹络。

NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数 的NiN块和全局平均池化层。

NiN的以上设计思想影响了后⾯⼀系列卷积神经⽹络的设计。

4、GoogLeNet
  1. 由Inception基础块组成。
  2. Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

Inception块结构:
在这里插入图片描述
GoogLeNet完整模型结构:
在这里插入图片描述

附:深度学习入门总目录

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值