ssd 模型结构图

SSD(Single Shot MultiBox Detector)是一种高效的物体检测框架,其核心思想是通过单次前向传播完成特征预测和边界框回归。对于人脸检测任务,SSD 可以被调整为专门针对人脸的检测器。以下是 SSD 面部检测模型架构的一些关键特性: ### 模型概述 SSD 架构基于一个基础卷积神经网络(CNN),通常使用 VGG 或 MobileNet 等作为骨干网络[^1]。该模型通过多尺度特征图进行目标检测,在不同层次上提取特征并预测边界框的位置和类别概率。 #### 主要组件 1. **默认框(Default Boxes/Anchor Boxes)** 默认框是在输入图像的不同位置预定义的一组固定大小和宽高比的矩形区域。这些框用于匹配真实标签中的对象,并计算损失函数。 2. **多尺度特征映射** SSD 使用多个特征层来进行检测,每一层对应不同的感受野尺寸,从而适应多种规模的目标。这种设计使得 SSD 能够有效地处理从小到大的各种面部实例[^2]。 3. **置信度与定位预测** 对于每个默认框,SSD 输出两类信息: - 类别分布的概率估计; - 边界框相对于默认框的偏移量。 4. **非极大值抑制 (NMS)** 在最终输出阶段应用 NMS 技术去除冗余重叠较高的候选框,保留最有可能的人脸区域。 虽然具体的人脸版本可能有所变化,但总体结构保持一致。下述伪代码展示了如何构建这样的系统: ```python import torch.nn as nn class SSD_Face(nn.Module): def __init__(self, num_classes=2): # Assuming background + face class super(SSD_Face, self).__init__() # Base network e.g., truncated VGG or ResNet etc. self.base_net = ... # Extra feature layers for multi-scale predictions self.extra_layers = ... # Localization and classification heads per default box self.loc_heads = ... self.conf_heads = ... def forward(self, x): sources = list() # List to store selected feature maps from base & extra nets locs = list() confidences = list() # Run through the main part of the net for k in range(len(self.base_net)): x = self.base_net[k](x) # Save relevant intermediate outputs plus extras at end... for layer in self.extra_layers: x = F.relu(layer(x), inplace=True) if some_condition_based_on_layer_index(): sources.append(x) # Apply multibox head to source layers for (x, l, c) in zip(sources, self.loc_heads, self.conf_heads): locs.append(l(x).permute(0, 2, 3, 1).contiguous()) confidences.append(c(x).permute(0, 2, 3, 1).contiguous()) # Combine results across all levels into one tensor each locs = torch.cat([o.view(o.size(0), -1) for o in locs], dim=1) confidences = torch.cat([o.view(o.size(0), -1) for o in confidences], dim=1) output = ( locs.view(locs.size(0), -1, 4), confidences.view(confidences.size(0), -1, num_classes), ) return output ``` 尽管上述描述提供了理论上的指导原则,实际实现可能会因应用场景需求而略有差异。如果需要更详细的视觉表示,则建议查阅原始论文附录或者开源项目文档获取精确图表说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值