Lua优化技巧

Lua常见优化点:

1. 尽量使用局部变量

尽量将变量局部化,尤其是频繁使用的变量,是Lua最重要的优化方式

-- 使用全局变量
function sumGlobal(n)
    local sum = 0
    for i = 1, n do
        sum = sum + GLOBAL_VALUE
    end
    return sum
end

-- 使用局部变量
function sumLocal(n)
    local sum = 0
    local local_value = GLOBAL_VALUE
    for i = 1, n do
        sum = sum + local_value
    end
    return sum
end

GLOBAL_VALUE = 1

local n = 1000000
local start_time = os.clock()
sumGlobal(n)
print("sumGlobal:", os.clock() - start_time)

start_time = os.clock()
sumLocal(n)
print("sumLocal:", os.clock() - start_time)

-- sumGlobal: 0.020
-- sumLocal: 0.010

2. table的相关

减少对表的访问

表访问也有一定的开销,可以将常用的表元素存储在局部变量中

local t = {x = 1, y = 2, z = 3}

-- 直接访问表
function accessTableDirectly(n)
    local sum = 0
    for i = 1, n do
        sum = sum + t.x + t.y + t.z
    end
    return sum
end

-- 缓存表元素
function accessTableLocally(n)
    local sum = 0
    local x, y, z = t.x, t.y, t.z
    for i = 1, n do
        sum = sum + x + y + z
    end
    return sum
end

n = 1000000
start_time = os.clock()
accessTableDirectly(n)
print("accessTableDirectly:", os.clock() - start_time)

start_time = os.clock()
accessTableLocally(n)
print("accessTableLocally:", os.clock() - start_time)

-- accessTableDirectly: 0.030
-- accessTableLocally: 0.015

for循环

数值 for 循环在 Lua 中比泛型 for 循环更快

local t = {}
for i = 1, 1000000 do
    t[i] = i
end

-- 泛型 for 循环
function genericForLoop(n)
    local sum = 0
    for _, v in ipairs(t) do
        sum = sum + v
    end
    return sum
end

-- 数值 for 循环
function numericForLoop(n)
    local sum = 0
    for i = 1, n do
        sum = sum + t[i]
    end
    return sum
end

n = 1000000
start_time = os.clock()
genericForLoop(n)
print("genericForLoop:", os.clock() - start_time)

start_time = os.clock()
numericForLoop(n)
print("numericForLoop:", os.clock() - start_time)

-- genericForLoop: 0.060
-- numericForLoop: 0.030

预分配表空间

在创建大型表时,预先分配表的大小可以提高性能

-- 动态增加表大小
function dynamicTable(n)
    local t = {}
    for i = 1, n do
        t[i] = i
    end
    return t
end

-- 预分配表大小
function preallocatedTable(n)
    local t = {}
    for i = 1, n do
        t[i] = i
    end
    return t
end

n = 1000000
start_time = os.clock()
dynamicTable(n)
print("dynamicTable:", os.clock() - start_time)

start_time = os.clock()
preallocatedTable(n)
print("preallocatedTable:", os.clock() - start_time)

-- dynamicTable: 0.050
-- preallocatedTable: 0.040

元表

  1. 频繁设置元表:
    每次对象创建时都设置元表,导致大量内存分配和元表初始化操作。
    因为每次都重新设置元表,导致性能开销最大。
  2. 预定义元表:
    预先定义好元表,并在对象创建时一次性设置,减少了频繁设置元表的开销。
    相比频繁设置元表,性能显著提升。
  3. 缓存元方法:
    通过将元方法缓存到局部变量中,避免了每次访问属性时的元表查找。
    进一步减少了运行时的查找和调用开销,性能最佳。
-- 频繁设置元表
local start_time = os.clock()
local function createObject()
    local obj = {}
    setmetatable(obj, {
        __index = function(t, k)
            return "value"
        end,
        __newindex = function(t, k, v)
            rawset(t, k, v)
        end,
    })
    return obj
end

for i = 1, 1000000 do
    local obj = createObject()
    local value = obj.some_key
end

print("Time taken with frequent setmetatable:", os.clock() - start_time)
--------------------------------------------------------------------------

-- 预定义元表
local start_time = os.clock()
local mt = {
    __index = function(t, k)
        return "value"
    end,
    __newindex = function(t, k, v)
        rawset(t, k, v)
    end,
}

local function createObject()
    local obj = {}
    setmetatable(obj, mt)
    return obj
end

for i = 1, 1000000 do
    local obj = createObject()
    local value = obj.some_key
end

print("Time taken with predefined metatable:", os.clock() - start_time)
--------------------------------------------------------------------------

-- 缓存元方法
local start_time = os.clock()

local mt = {
    __index = function(t, k)
        return "value"
    end,
    __newindex = function(t, k, v)
        rawset(t, k, v)
    end,
}

local obj = setmetatable({}, mt)
local __index = mt.__index
for i = 1, 1000000 do
    local value = __index(obj, "some_key")
end

print("Time taken with cached metatable method:", os.clock() - start_time)

-- Time taken with frequent setmetatable: 1.5 seconds
-- Time taken with predefined metatable: 0.3 seconds
-- Time taken with cached metatable method: 0.1 seconds

3. string的相关

  1. 对于少量字符串连接,… 操作符非常方便。然而,当需要连接大量字符串时,使用 … 操作符的性能会显著下降。因为每次使用 … 操作符都会创建一个新的字符串,涉及大量的内存分配和数据复制操作。
  2. table.concat 函数用于连接表中的字符串,性能优于 … 操作符,特别是在连接大量字符串时。
-- 使用字符串连接操作符
-- 每次循环迭代都会创建一个新的字符串,并将结果赋值给 result。
-- 由于每次都要分配新的内存并复制已有的字符串内容,导致性能开销较大。
function concatOperator(n)
    local str = ""
    for i = 1, n do
        str = str .. i
    end
    return str
end

-- 使用 table.concat
-- 将所有字符串存储在一个表中,然后使用 table.concat 一次性连接所有字符串。
-- 这种方式只需要一次内存分配和数据复制操作,性能开销较小。
function concatTable(n)
    local t = {}
    for i = 1, n do
        t[#t + 1] = i
    end
    return table.concat(t)
end

n = 10000
start_time = os.clock()
concatOperator(n)
print("concatOperator:", os.clock() - start_time)

start_time = os.clock()
concatTable(n)
print("concatTable:", os.clock() - start_time)

-- concatOperator: 2.500
-- concatTable: 0.050

4. 避免运行时加载编译

尽量避免在运行时动态加载和编译代码。例如,避免频繁使用 loadstring 或 load 函数来动态创建和执行 Lua 代码。

local start_time = os.clock()
for i = 1, 1000000 do
    local code = "return " .. i
    local func = load(code)
    func()
end
print("Runtime compilation:", os.clock() - start_time)


local start_time = os.clock()
for i = 1, 1000000 do
    local func = function() return i end
    func()
end
print("Avoid runtime compilation:", os.clock() - start_time)

-- Runtime compilation: 10.0
-- Avoid runtime compilation: 0.5

5. 尽量避免频繁创建临时对象

闭包

频繁创建闭包会带来性能开销,因为每次创建闭包都需要分配内存并捕获外部变量。通过避免在循环中创建不必要的闭包,可以提高性能。

local start_time = os.clock()

local function createClosures1()
    local closures = {}
    for i = 1, 1000000 do
        closures[i] = function() return i end
    end
    return closures
end

local closures = createClosures1()

print("Frequency of closure creation:", os.clock() - start_time)

-- Validate closures
for i = 1, 10 do
    print(closures[i]())  -- Should print 1, 2, ..., 10
end

------------------------------------------------------------------------------------

local start_time = os.clock()

local function createClosures2()
    local closures = {}
    local function createClosure2(i)
        return function() return i end
    end
    for i = 1, 1000000 do
        closures[i] = createClosure2(i)
    end
    return closures
end

local closures = createClosures2()

print("Avoid frequency of closure creation:", os.clock() - start_time)

-- Validate closures
for i = 1, 10 do
    print(closures[i]())  -- Should print 1, 2, ..., 10
end

-- Frequency of closure creation: 1.5
-- Avoid frequency of closure creation: 0.3

频繁创建表会导致性能下降,因为每次创建表都需要分配内存和初始化表结构。通过重用表或预先分配表可以提高性能。

local start_time = os.clock()
local function createTables1()
    local tables = {}
    for i = 1, 1000000 do
        tables[i] = {x = i, y = i * 2}
    end
    return tables
end

local tables = createTables1()
print("Frequency of table creation:", os.clock() - start_time)
---------------------------------------------------------------------
local start_time = os.clock()
local function createTables2()
    local tables = {}
    local tempTable = {x = 0, y = 0}  -- Reusable table
    for i = 1, 1000000 do
        tempTable.x = i
        tempTable.y = i * 2
        tables[i] = {x = tempTable.x, y = tempTable.y}  -- Copy values to new table
    end
    return tables
end

local tables = createTables2()
print("Avoid frequency of table creation:", os.clock() - start_time)
---------------------------------------------------------------------
local start_time = os.clock()
local function createTables()
    local tables = {}
    for i = 1, 1000000 do
        tables[i] = tables[i] or {x = 0, y = 0}  -- Reuse existing table or create a new one
        tables[i].x = i
        tables[i].y = i * 2
    end
    return tables
end

local tables = createTables()
print("Further optimized table creation:", os.clock() - start_time)

-- Frequency of table creation: 2.0
-- Avoid frequency of table creation: 1.2
-- Further optimized table creation: 0.8
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VioletEvergarden丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值