山峰和山谷

【题目描述】

给定一个n×n的网格状地图,每个方格(i,j)有一个高度 wij​​ 。如果两个方格有公共顶点,则它们是相邻的。

定义山峰和山谷如下:

均由地图上的一个连通块组成;

所有方格高度都相同;

周围的方格(即不属于山峰或山谷但与山峰或山谷相邻的格子)高度均大于山谷的高度,或小于山峰的高度。

求地图内山峰和山谷的数量。特别地,如果整个地图方格的高度均相同,则整个地图既是一个山谷,也是一个山峰。

特别注意:如果一个联通块既属于山峰,也属于山谷(即相邻联通块既有比自身高的,也有比自身矮的),那么该联通块属于半山腰,即不算山峰,也不算山谷,如样例2。

【输入】

第一行一个整数n(2≤n≤1000),表示地图的大小。

接下来 n 行每行 n 个整数表示地图。第 i 行有 n个整数 wi1, wi2, ..., win,(0≤wi1≤50),表示地图第 i 行格子的高度。

【输出】

输出一行两个整数,分别表示山峰和山谷的数量。

样例 #1

样例输入 #1

5
8 8 8 7 7
7 7 8 8 7
7 7 7 7 7
7 8 8 7 8
7 8 8 8 8

样例输出 #1

2 1

样例 #2

样例输入 #2

5
5 7 8 3 1
5 5 7 6 6
6 6 6 2 8
5 7 2 5 8
7 1 0 1 7

 

样例输出 #2

3 3

提示与说明

样例 1 解释:

样例 2 解释:

大体思路

题目让我们判断山峰和山谷,如果想样例1的话,这并不难。但是,问题出在样例2,有一个半山腰的概念(即既是山峰又是山谷)。

我们可以设立两个变量,分别表示山峰和山谷的状态,在每次dfs时判断并刷新山峰和山谷的状态,排除既是山峰又是山谷(半山腰)的情况。

代码如下

#include "bits/stdc++.h"
using namespace std;
const int N = 1e3+8;
int n, a[N][N], sf, sg;
bool vis[N][N], f, g;//用vis数组来表示每个格子是否已走过,f和g表示每个格子山峰和山谷的状态 
int xx[9] = {0,-1,-1,-1,0,1,1,1,0}, yy[9] = {0,-1,0,1,1,1,0,-1,-1};
void dfs(int x, int y) {
	for(int i=1; i<=8; i++) {//深搜核心步骤 
		int dx = x + xx[i],dy = y + yy[i]; 
		if(dx < 1 || dx > n || dy < 1 || dy > n) continue;//判断是否越界 
		if(a[dx][dy] == a[x][y]) {
			if(vis[dx][dy] == true) continue;//判断格子是否被走过 
			vis[dx][dy] = true;
			dfs(dx,dy);
		}else{
			if(a[dx][dy] > a[x][y]) g=1;//判断山谷状态 
			if(a[dx][dy] < a[x][y]) f=1;//判断山峰状态 
		}
	}
}
int main() {
	cin>>n;
	for(int i=1; i<=n; i++) {
		for(int j=1; j<=n; j++) {
			cin>>a[i][j];
		}
	}
	for(int i=1; i<=n; i++) {
		for(int j=1; j<=n; j++) {
			if(vis[i][j] == false) {
				vis[i][j] = true;
				g=0, f=0;//刷新山峰和山谷状态 
				dfs(i,j);
				if(g == 1 && f == 1) continue;
				if(g == 0 && f == 1) sf++;//刷新山峰数 
				else if(g == 1 && f == 0) sg++;//刷新山谷数
				else if(g == 0 && f == 0){
					cout<<"1 1"<<endl;
					return 0;
				}
			}
		}
	}
	cout<<sf<<' '<<sg<<endl;//输出 
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值