冒泡排序
选择排序
插入排序
Shell排序
归并排序
快速排序
堆排序
计数排序
冒泡排序
冒泡排序
package ClassicalAlgorithm;
import java.util.Arrays;
public class BubbleSort {
private static int[] bubbleSort2;
public static void main(String[] args) {
int[] s={3,5,2,17,48,19,1,10};
bubbleSort2 = bubbleSort(s);
System.out.println(Arrays.toString(bubbleSort2));
}
/**
* 1.冒泡排序
* 平均时间复杂度 O(n^2) 最好时间复杂度O(n) 最差时间复杂度O(n^2) 空间复杂度O(1)
* In-place: 占用常数内存,不占用额外内存 稳定
* 步骤1: 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
* 步骤2: 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
* 步骤3: 针对所有的元素重复以上的步骤,除了最后一个;
* 步骤4: 重复步骤1~3,直到排序完成。
* @param array
* @return
*/
public static int[] bubbleSort(int[] array) {
if (array.length == 0)
return array;
for (int i = 0; i < array.length; i++)
for (int j = 0; j < array.length - 1 - i; j++)
if (array[j + 1] < array[j]) {
int temp = array[j + 1];
array[j + 1] = array[j];
array[j] = temp;
}
return array;
}
}
选择排序
package ClassicalAlgorithm;
import java.util.Arrays;
public class SelectionSort {
private static int[] selectionSort;
public static void main(String[] args) {
int[] s={3,5,2,17,48,19,1,10};
selectionSort = selectionSort(s);
System.out.println(Arrays.toString(selectionSort));
}
/**
* 每趟找出最小值的位置,与第一个数i=0交换,i++,然后在剩下的数中找最小值,再与第i个值交换
* 2.选择排序
* 平均时间复杂度 O(n^2) 最好时间复杂度O(n^2) 最差时间复杂度O(n^2) 空间复杂度O(1)
* In-place: 占用常数内存,不占用额外内存 不稳定
* @param array
* @return
*/
public static int[] selectionSort(int[] array) {
if (array.length == 0)
return array;
for (int i = 0; i < array.length; i++) {
int minIndex = i;
for (int j = i; j < array.length; j++) {
if (array[j] < array[minIndex]) //找到最小的数
minIndex = j; //将最小数的索引保存
}
//因为这里有交换,所以不是稳定算法
int temp = array[minIndex];
array[minIndex] = array[i];
array[i] = temp;
}
return array;
}
}
插入排序
插入排序
package ClassicalAlgorithm;
import java.util.Arrays;
public class InsertionSort {
private static int[] insertionSort;
public static void main(String[] args) {
int[] s={3,5,2,17,48,19,1,10};
insertionSort = insertionSort(s);
System.out.println(Arrays.toString(insertionSort));
}
/**
* 3.插入排序
* 平均时间复杂度 O(n^2) 最好时间复杂度O(n) 最差时间复杂度O(n^2) 空间复杂度O(1)
* In-place: 占用常数内存,不占用额外内存 稳定
* 步骤1: 从第一个元素开始,该元素可以认为已经被排序;
* 步骤2: 取出下一个元素,在已经排序的元素序列中从后向前扫描;
* 步骤3: 如果该元素(已排序)大于新元素,将该元素移到下一位置;
* 步骤4: 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
* 步骤5: 将新元素插入到该位置后;
* 步骤6: 重复步骤2~5。
* @param array
* 对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入
* @return
*/
public static int[] insertionSort(int[] array) {
if (array.length == 0)
return array;
int current;
for (int i = 0; i < array.length - 1; i++) {
//current 当前要插入的数
current = array[i + 1];
int preIndex = i;
//直到找到已排序的元素小于或者等于新元素的位置; 将新元素插入到该位置后;
while (preIndex >= 0 && current < array[preIndex]) {
array[preIndex + 1] = array[preIndex];
preIndex--;
}
array[preIndex + 1] = current;
}
return array;
}
}
Shell排序
package ClassicalAlgorithm;
import java.util.Arrays;
public class ShellSort {
private static int[] ShellSort;
public static void main(String[] args) {
int[] s={3,5,2,17,48,19,1,10};
ShellSort = shellSort(s);
System.out.println(Arrays.toString(ShellSort));
}
/**
* 4.希尔排序:缩小增量排序
* 平均时间复杂度 O(nlog2 n) 最好时间复杂度O(nlog2 n) 最差时间复杂度O(nlog2 n) 空间复杂度O(1)
* In-place: 占用常数内存,不占用额外内存 不稳定
* @param array
* @return
*/
public static int[] shellSort(int[] array) {
int len = array.length;
int temp, gap = len / 2;
while (gap > 0) {
//以gap为间隔组成一个数组,然后对该数组进行插入排序
for (int i = gap; i < len; i++) {
temp = array[i];
int preIndex = i - gap;
while (preIndex >= 0 && array[preIndex] > temp) {
array[preIndex + gap] = array[preIndex];
preIndex -= gap;
}
array[preIndex + gap] = temp;
}
gap /= 2;
}
return array;
}
}
归并排序
归并排序
package ClassicalAlgorithm;
import java.util.Arrays;
public class MergeSort {
private static int[] mergeSort;
public static void main(String[] args) {
int[] s={3,5,2,17,48,19,1,10};
mergeSort = mergeSort(s);
System.out.println(Arrays.toString(mergeSort));
}
/**
* 归并排序
*将已有序的子序列合并,得到完全有序的序列;
*即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
* 平均时间复杂度 O(nlog2n) 最好时间复杂度O(nlog2n) 最差时间复杂度O(nlog2 n) 空间复杂度O(n)
* Out-place: 占用额外内存 稳定
* @param array
* @return
*/
public static int[] mergeSort(int[] array) {
if (array.length < 2) return array;
int mid = array.length / 2;
int[] left = Arrays.copyOfRange(array, 0, mid);
int[] right = Arrays.copyOfRange(array, mid, array.length);
return merge(mergeSort(left), mergeSort(right));
}
/**
* 归并排序——将两段排序好的数组结合成一个排序数组
*
* @param left
* @param right
* @return
*/
public static int[] merge(int[] left, int[] right) {
int[] result = new int[left.length + right.length];
for (int index = 0, i = 0, j = 0; index < result.length; index++) {
if (i >= left.length)
result[index] = right[j++];
else if (j >= right.length)
result[index] = left[i++];
else if (left[i] > right[j])
result[index] = right[j++];
else
result[index] = left[i++];
}
return result;
}
}
快速排序
快速排序
package ClassicalAlgorithm;
import java.util.Arrays;
public class QuickSort {
private static int[] quickSort;
public static void main(String[] args) {
int[] s={3,5,2,17,48,19,1,10};
quickSort = quickSort(s,0,7);
System.out.println(Arrays.toString(quickSort));
}
/**
* 快速排序方法
* 平均时间复杂度 O(nlog2n) 最好时间复杂度O(nlog2n) 最差时间复杂度O(n^2) 空间复杂度O(log2n)
* In-place: 占用常数内存,不占用额外内存 不稳定
* @param array
* @param start
* @param end
* @return
*/
public static int[] quickSort(int[] array, int start, int end) {
if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
int smallIndex = partition(array, start, end);
if (smallIndex > start)
quickSort(array, start, smallIndex - 1);
if (smallIndex < end)
quickSort(array, smallIndex + 1, end);
return array;
}
/**
* 快速排序算法——partition
* 步骤1:从数列中挑出一个元素,称为 “基准”(pivot );
* 步骤2:重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。
* 在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
* 步骤3:递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
* @param array
* @param start
* @param end
* @return
*/
public static int partition(int[] array, int start, int end) {
int pivot = (int) (start + Math.random() * (end - start + 1));
int smallIndex = start - 1;
swap(array, pivot, end);
//快慢指针 smallIndex 慢指针 i是快指针
//i是一直增加的 smallIndex是当遇到的值比基准值小的时候增加
//当遇到比基准值大的i增加 smallIndex不增加 直到遇到下一个比基准值小于等于的
//等于是遇到了自身,将其自身和大于自身的交换
//就将快指针和慢指针的值交换
for (int i = start; i <= end; i++)
if (array[i] <= array[end]) {
smallIndex++;
if (i > smallIndex)
swap(array, i, smallIndex);
}
return smallIndex;
}
/**
* 交换数组内两个元素
* @param array
* @param i
* @param j
*/
public static void swap(int[] array, int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
堆排序
堆排序
package ClassicalAlgorithm;
import java.util.Arrays;
/**
* 步骤1:将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
*
* 步骤2:将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区
* (R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
*
* 步骤3:由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区
* (R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,
* 得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。
* 不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
*
* @author:廖泽铭
* @Description: TODO
* @date 2020-9-9
*/
public class HeapSort {
private static int[] heapSort;
public static void main(String[] args) {
int[] s={3,5,2,17,48,19,1,10};
heapSort = heapSort(s);
System.out.println(Arrays.toString(heapSort));
}
//声明全局变量,用于记录数组array的长度;
static int len;
/**
* 堆排序算法
* 平均时间复杂度 O(nlog2n) 最好时间复杂度O(nlog2n) 最差时间复杂度O(nlog2 n) 空间复杂度O(1)
* In-place: 占用常数内存,不占用额外内存 不稳定
* @param array
* @return
*/
public static int[] heapSort(int[] array) {
len = array.length;
if (len < 1) return array;
//1.构建一个最大堆
buildMaxHeap(array);
//2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
while (len > 0) {
swap(array, 0, len - 1);
len--;
adjustHeap(array, 0);
}
return array;
}
/**
* 建立最大堆
*
* @param array
*/
public static void buildMaxHeap(int[] array) {
//从最后一个非叶子节点开始向上构造最大堆
//for循环这样写会更好一点:i的左子树和右子树分别2i+1和2(i+1)
//假设有7个节点,则二叉树3个父节点 len/2+1即偶数个节点会加一
//依次遍历这些节点,建立最大堆
for (int i = (len/2- 1); i >= 0; i--) {
adjustHeap(array, i);
}
}
/**
* 调整使之成为最大堆
*
* @param array
* @param i
*/
public static void adjustHeap(int[] array, int i) {
int maxIndex = i;
//如果有左子树,且左子树大于父节点,则将最大指针指向左子树
if (i * 2+1< len && array[i * 2+1] > array[maxIndex])
maxIndex = i * 2+1;
//如果有右子树,且右子树大于父节点,则将最大指针指向右子树
if (i * 2 + 2 < len && array[i * 2 + 2] > array[maxIndex])
maxIndex = i * 2 + 2;
//如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
if (maxIndex != i) {
swap(array, maxIndex, i);
adjustHeap(array, maxIndex);
}
}
/**
* 交换数组内两个元素
* @param array
* @param i
* @param j
*/
public static void swap(int[] array, int i, int j) {
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}
计数排序
package ClassicalAlgorithm;
import java.util.Arrays;
//计数排序
public class CountingSort {
private static int[] countingSort;
public static void main(String[] args) {
int[] s={3,5,2,17,48,19,1,10};
countingSort = countingSort(s);
System.out.println(Arrays.toString(countingSort));
}
/**
* 计数排序
* 最佳情况:T(n) = O(n+k)
* 最差情况:T(n) = O(n+k)
* 平均情况:T(n) = O(n+k) 空间复杂度O(k)
* Out-place: 占用额外内存 稳定
* @param array
* @return
*/
public static int[] countingSort(int[] array) {
if (array.length == 0) return array;
int bias, min = array[0], max = array[0];
//找寻最大值和最小值 确定计数范围
for (int i = 1; i < array.length; i++) {
if (array[i] > max)
max = array[i];
if (array[i] < min)
min = array[i];
}
bias = 0 - min;
//新建一个范围空间 比如说排序数范围是5-15
//bucket=new int(11);
//15就放在bucket(10)的位置 5放在bucket(0)的位置
int[] bucket = new int[max - min + 1];
Arrays.fill(bucket, 0);
for (int i = 0; i < array.length; i++) {
bucket[array[i] + bias]++;
}
int index = 0, i = 0;
while (index < array.length) {
if (bucket[i] != 0) {
array[index] = i - bias;
bucket[i]--;
index++;
} else
i++;
}
return array;
}
}