经典排序算法

学习一下前辈的算法
地址1
地址2

在这里插入图片描述

在这里插入图片描述

冒泡排序
选择排序
插入排序
Shell排序
归并排序
快速排序
堆排序
计数排序


冒泡排序

package ClassicalAlgorithm;

import java.util.Arrays;

public class BubbleSort {
	private static int[] bubbleSort2;
	public static void main(String[] args) {
		int[] s={3,5,2,17,48,19,1,10};
		bubbleSort2 = bubbleSort(s);
		System.out.println(Arrays.toString(bubbleSort2));
	}
	
    /**
     * 1.冒泡排序
     * 平均时间复杂度 O(n^2) 最好时间复杂度O(n) 最差时间复杂度O(n^2)  空间复杂度O(1)
     * In-place: 占用常数内存,不占用额外内存  稳定
     * 步骤1: 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
	 * 步骤2: 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
	 * 步骤3: 针对所有的元素重复以上的步骤,除了最后一个;
	 * 步骤4: 重复步骤1~3,直到排序完成。
     * @param array
     * @return
     */
    public static int[] bubbleSort(int[] array) {
        if (array.length == 0)
            return array;
        for (int i = 0; i < array.length; i++)
            for (int j = 0; j < array.length - 1 - i; j++)
                if (array[j + 1] < array[j]) {
                    int temp = array[j + 1];
                    array[j + 1] = array[j];
                    array[j] = temp;
                }
        return array;
    }

}

选择排序

package ClassicalAlgorithm;

import java.util.Arrays;

public class SelectionSort {
	private static int[] selectionSort;
	public static void main(String[] args) {
		int[] s={3,5,2,17,48,19,1,10};
		selectionSort = selectionSort(s);
		System.out.println(Arrays.toString(selectionSort));
	}
    /**
     * 每趟找出最小值的位置,与第一个数i=0交换,i++,然后在剩下的数中找最小值,再与第i个值交换
     * 2.选择排序
     * 平均时间复杂度 O(n^2) 最好时间复杂度O(n^2) 最差时间复杂度O(n^2) 空间复杂度O(1)
     * In-place: 占用常数内存,不占用额外内存  不稳定
     * @param array
     * @return
     */
    public static int[] selectionSort(int[] array) {
        if (array.length == 0)
            return array;
        for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            for (int j = i; j < array.length; j++) {
                if (array[j] < array[minIndex]) //找到最小的数
                    minIndex = j; //将最小数的索引保存
            }
           //因为这里有交换,所以不是稳定算法
            int temp = array[minIndex];
            array[minIndex] = array[i];
            array[i] = temp;
        }
        return array;
    }

}


插入排序

package ClassicalAlgorithm;

import java.util.Arrays;

public class InsertionSort {
	
	private static int[] insertionSort;
	public static void main(String[] args) {
		int[] s={3,5,2,17,48,19,1,10};
		insertionSort = insertionSort(s);
		System.out.println(Arrays.toString(insertionSort));
	}
    /**
     * 3.插入排序
     * 平均时间复杂度 O(n^2) 最好时间复杂度O(n) 最差时间复杂度O(n^2) 空间复杂度O(1)
     * In-place: 占用常数内存,不占用额外内存  稳定
     * 步骤1: 从第一个元素开始,该元素可以认为已经被排序;
	 * 步骤2: 取出下一个元素,在已经排序的元素序列中从后向前扫描;
	 * 步骤3: 如果该元素(已排序)大于新元素,将该元素移到下一位置;
	 * 步骤4: 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
	 * 步骤5: 将新元素插入到该位置后;
	 * 步骤6: 重复步骤2~5。
     * @param array
     * 对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入
     * @return
     */
    public static int[] insertionSort(int[] array) {
        if (array.length == 0)
            return array;
        int current;
        for (int i = 0; i < array.length - 1; i++) {
        	//current 当前要插入的数
            current = array[i + 1];
            int preIndex = i;
            //直到找到已排序的元素小于或者等于新元素的位置; 将新元素插入到该位置后;
            while (preIndex >= 0 && current < array[preIndex]) {
                array[preIndex + 1] = array[preIndex];
                preIndex--;
            }
            array[preIndex + 1] = current;
        }
        return array;
    }

}

Shell排序

package ClassicalAlgorithm;

import java.util.Arrays;

public class ShellSort {
	private static int[] ShellSort;
	public static void main(String[] args) {
		int[] s={3,5,2,17,48,19,1,10};
		ShellSort = shellSort(s);
		System.out.println(Arrays.toString(ShellSort));
	}
	
    /**
     * 4.希尔排序:缩小增量排序
     * 平均时间复杂度 O(nlog2 n) 最好时间复杂度O(nlog2 n) 最差时间复杂度O(nlog2 n) 空间复杂度O(1)
     * In-place: 占用常数内存,不占用额外内存  不稳定
     * @param array
     * @return
     */
    public static int[] shellSort(int[] array) {
        int len = array.length;
        int temp, gap = len / 2;
        while (gap > 0) {
        	//以gap为间隔组成一个数组,然后对该数组进行插入排序
            for (int i = gap; i < len; i++) {
                temp = array[i];
                int preIndex = i - gap;
                while (preIndex >= 0 && array[preIndex] > temp) {
                    array[preIndex + gap] = array[preIndex];
                    preIndex -= gap;
                }
                array[preIndex + gap] = temp;
            }
            gap /= 2;
        }
        return array;
    }

}


归并排序

package ClassicalAlgorithm;

import java.util.Arrays;

public class MergeSort {
	private static int[] mergeSort;
	public static void main(String[] args) {
		int[] s={3,5,2,17,48,19,1,10};
		mergeSort = mergeSort(s);
		System.out.println(Arrays.toString(mergeSort));
	}
	
    /**
     * 归并排序
     *将已有序的子序列合并,得到完全有序的序列;
     *即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
     * 平均时间复杂度 O(nlog2n) 最好时间复杂度O(nlog2n) 最差时间复杂度O(nlog2 n)  空间复杂度O(n)
     * Out-place: 占用额外内存  稳定
     * @param array
     * @return
     */
    public static int[] mergeSort(int[] array) {
        if (array.length < 2) return array;
        int mid = array.length / 2;
        int[] left = Arrays.copyOfRange(array, 0, mid);
        int[] right = Arrays.copyOfRange(array, mid, array.length);
        return merge(mergeSort(left), mergeSort(right));
    }
    /**
     * 归并排序——将两段排序好的数组结合成一个排序数组
     *
     * @param left
     * @param right
     * @return
     */
    public static int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        for (int index = 0, i = 0, j = 0; index < result.length; index++) {
            if (i >= left.length)
                result[index] = right[j++];
            else if (j >= right.length)
                result[index] = left[i++];
            else if (left[i] > right[j])
                result[index] = right[j++];
            else
                result[index] = left[i++];
        }
        return result;
    }

}


快速排序

package ClassicalAlgorithm;

import java.util.Arrays;

public class QuickSort {
	
	private static int[] quickSort;
	public static void main(String[] args) {
		int[] s={3,5,2,17,48,19,1,10};
		quickSort = quickSort(s,0,7);
		System.out.println(Arrays.toString(quickSort));
	}
	
    /**
     * 快速排序方法
     * 平均时间复杂度 O(nlog2n) 最好时间复杂度O(nlog2n) 最差时间复杂度O(n^2)  空间复杂度O(log2n)
     * In-place: 占用常数内存,不占用额外内存  不稳定
     * @param array
     * @param start
     * @param end
     * @return
     */
    public static int[] quickSort(int[] array, int start, int end) {
        if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
        int smallIndex = partition(array, start, end);
        if (smallIndex > start)
            quickSort(array, start, smallIndex - 1);
        if (smallIndex < end)
            quickSort(array, smallIndex + 1, end);
        return array;
    }
    /**
     * 快速排序算法——partition
     * 步骤1:从数列中挑出一个元素,称为 “基准”(pivot );
	 * 步骤2:重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。
	 * 在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
	 * 步骤3:递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
     * @param array
     * @param start
     * @param end
     * @return
     */
    public static int partition(int[] array, int start, int end) {
        int pivot = (int) (start + Math.random() * (end - start + 1));
        int smallIndex = start - 1;
        swap(array, pivot, end);
        //快慢指针 smallIndex 慢指针 i是快指针
        //i是一直增加的 smallIndex是当遇到的值比基准值小的时候增加
        //当遇到比基准值大的i增加 smallIndex不增加  直到遇到下一个比基准值小于等于的
        //等于是遇到了自身,将其自身和大于自身的交换
        //就将快指针和慢指针的值交换 
        for (int i = start; i <= end; i++)
            if (array[i] <= array[end]) {
                smallIndex++;
                if (i > smallIndex)
                    swap(array, i, smallIndex);
            }
        return smallIndex;
    }

    /**
     * 交换数组内两个元素
     * @param array
     * @param i
     * @param j
     */
    public static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

}


堆排序

package ClassicalAlgorithm;

import java.util.Arrays;

/**
 * 步骤1:将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
 * 
 * 步骤2:将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区
 * (R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
 * 
 * 步骤3:由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区
 * (R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,
 * 得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。
 * 不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
 * 
 * @author:廖泽铭
 * @Description: TODO
 * @date 2020-9-9
 */
public class HeapSort {
	private static int[] heapSort;
	public static void main(String[] args) {
		int[] s={3,5,2,17,48,19,1,10};
		heapSort = heapSort(s);
		System.out.println(Arrays.toString(heapSort));
	}
	
    //声明全局变量,用于记录数组array的长度;
    static int len;
    /**
     * 堆排序算法
     * 平均时间复杂度 O(nlog2n) 最好时间复杂度O(nlog2n) 最差时间复杂度O(nlog2 n)  空间复杂度O(1)
     * In-place: 占用常数内存,不占用额外内存  不稳定
     * @param array
     * @return
     */
    public static int[] heapSort(int[] array) {
        len = array.length;
        if (len < 1) return array;
        //1.构建一个最大堆
        buildMaxHeap(array);
        //2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
        while (len > 0) {
            swap(array, 0, len - 1);
            len--;
            adjustHeap(array, 0);
        }
        return array;
    }
    /**
     * 建立最大堆
     *
     * @param array
     */
    public static void buildMaxHeap(int[] array) {
        //从最后一个非叶子节点开始向上构造最大堆
        //for循环这样写会更好一点:i的左子树和右子树分别2i+1和2(i+1)
    	//假设有7个节点,则二叉树3个父节点 len/2+1即偶数个节点会加一
    	//依次遍历这些节点,建立最大堆
        for (int i = (len/2- 1); i >= 0; i--) {
            adjustHeap(array, i);
        }
    }
    /**
     * 调整使之成为最大堆
     *
     * @param array
     * @param i
     */
    public static void adjustHeap(int[] array, int i) {
        int maxIndex = i;
        //如果有左子树,且左子树大于父节点,则将最大指针指向左子树
        if (i * 2+1< len && array[i * 2+1] > array[maxIndex])
            maxIndex = i * 2+1;
        //如果有右子树,且右子树大于父节点,则将最大指针指向右子树
        if (i * 2 + 2 < len && array[i * 2 + 2] > array[maxIndex])
            maxIndex = i * 2 + 2;
        //如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
        if (maxIndex != i) {
            swap(array, maxIndex, i);
            adjustHeap(array, maxIndex);
        }
    }
    
    /**
     * 交换数组内两个元素
     * @param array
     * @param i
     * @param j
     */
    public static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

}

计数排序

package ClassicalAlgorithm;

import java.util.Arrays;

//计数排序
public class CountingSort {
	private static int[] countingSort;
	public static void main(String[] args) {
		int[] s={3,5,2,17,48,19,1,10};
		countingSort = countingSort(s);
		System.out.println(Arrays.toString(countingSort));
	}
    /**
     * 计数排序
     * 最佳情况:T(n) = O(n+k)
	 * 最差情况:T(n) = O(n+k)
	 * 平均情况:T(n) = O(n+k) 空间复杂度O(k)
     * Out-place: 占用额外内存  稳定
     * @param array
     * @return
     */
    public static int[] countingSort(int[] array) {
        if (array.length == 0) return array;
        int bias, min = array[0], max = array[0];
        //找寻最大值和最小值 确定计数范围
        for (int i = 1; i < array.length; i++) {
            if (array[i] > max)
                max = array[i];
            if (array[i] < min)
                min = array[i];
        }
        bias = 0 - min;
        //新建一个范围空间 比如说排序数范围是5-15
        //bucket=new int(11);
        //15就放在bucket(10)的位置  5放在bucket(0)的位置
        int[] bucket = new int[max - min + 1];
        Arrays.fill(bucket, 0);
        for (int i = 0; i < array.length; i++) {
            bucket[array[i] + bias]++;
        }
        int index = 0, i = 0;
        while (index < array.length) {
            if (bucket[i] != 0) {
                array[index] = i - bias;
                bucket[i]--;
                index++;
            } else
                i++;
        }
        return array;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值