问题提出及正则化的引入
正则化的提出同样是解决模型过拟合问题,之前提出的特征组合来训练模型,当训练次数足够多时,损失会降低到非常的低,但却会出现过拟合问题。如图
迭代次数足够多,模型的复杂度也越高。可见一个好的模型和损失、模型的复杂度都有关。
所以,训练优化算法是一个由两项内容组成的函数:一个是损失项,用于衡量模型与数据的拟合度,另一个是正则化项,用于衡量模型复杂度。
所以,什么是正则化? 降低复杂模型的复杂度来避免过拟合的原则就是正则化。
如何定义复杂度
- 将模型复杂度作为模型中所有特征的权重的函数。
- 将模型复杂度作为具有非零权重的特征总数的函数。
对于第一种方式(特征的权重的函数),权重的绝对值越高,对复杂度的贡献越大。
使用L2正则化量化复杂度
L2正则化(也称岭正则化):所有权重的平方和,对权重的平方和的惩罚。
如何对模型正则化
- 早停法