(180923)通过正则化降低特征组合过度 模型过于复杂---机器学习速成

本文介绍了正则化的概念,旨在解决模型过拟合问题。通过引入L2正则化,对模型复杂度进行量化,以权重的平方和为惩罚项,控制模型的复杂度。在训练过程中,通过调整λ参数找到最佳平衡点,避免欠拟合或过拟合。测试结果显示,适当的正则化可以有效降低模型复杂度,减少训练与测试损失的差距。
摘要由CSDN通过智能技术生成

问题提出及正则化的引入

正则化的提出同样是解决模型过拟合问题,之前提出的特征组合来训练模型,当训练次数足够多时,损失会降低到非常的低,但却会出现过拟合问题。如图

在这里插入图片描述

迭代次数足够多,模型的复杂度也越高。可见一个好的模型和损失、模型的复杂度都有关。

所以,训练优化算法是一个由两项内容组成的函数:一个是损失项,用于衡量模型与数据的拟合度,另一个是正则化项,用于衡量模型复杂度。

所以,什么是正则化? 降低复杂模型的复杂度来避免过拟合的原则就是正则化。

如何定义复杂度
  • 将模型复杂度作为模型中所有特征的权重的函数。
  • 将模型复杂度作为具有非零权重的特征总数的函数。

对于第一种方式(特征的权重的函数),权重的绝对值越高,对复杂度的贡献越大。

使用L2正则化量化复杂度

L2正则化(也称岭正则化):所有权重的平方和,对权重的平方和的惩罚。
在这里插入图片描述

如何对模型正则化

  • 早停法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值