假设检验
一、假设概念
假设总体均值为μ,那么实际抽样的均值离μ越近意味着假设越合理,相反,实际抽样均值离μ越远意味着假设越不合理。其中,实际抽样结果与假设的差异“程度”可以用概率值表示,概率值越大意味着越无差异。在实际中往往认为设定一个P-value的阈值将差异程度判断为有差异或者无差异,这就是显著性水平。
二、假设检验基本步骤
- 提出原假设和备择假设
- 确定适当的检验统计量
- 规定显著性水平
- 计算检验统计量的值
- 做出决策
三、显著性水平与拒绝域
四、单样本t检验
- 假设样本服从t分布,原假设为总体均值等于μ0
- 备择假设为总体均值不等于μ0
- 先计算样本均值x,样本标准差σ
- 检验统计量如下为t = (x-μ0)/(σ/√n)
- 根据计算出来的P值来判断是否拒绝原假设,例如P值大于原显著水平,则无法拒绝原假设,否则拒绝原假设,接受备择假设。显著性水平可以理解为拒绝原假设的概率。这里以0.05作为判断标准,若p值大于0.05 则表示接受原假设,否则拒绝原假设。
代码实战:
import pandas as pd
import statsmodels.api as sm
#单样本t检