python统计分析-假设检验

这篇博客详细介绍了Python中进行假设检验的过程,包括概念、基本步骤、显著性水平和拒绝域的理解,以及单样本和双样本t检验的运用。通过具体的代码示例和数据分析,解释了如何进行t检验,以及如何根据p值判断差异显著性,以确定性别对获得小费的影响为例,展示了双样本t检验的应用。
摘要由CSDN通过智能技术生成

假设检验

一、假设概念

假设总体均值为μ,那么实际抽样的均值离μ越近意味着假设越合理,相反,实际抽样均值离μ越远意味着假设越不合理。其中,实际抽样结果与假设的差异“程度”可以用概率值表示,概率值越大意味着越无差异。在实际中往往认为设定一个P-value的阈值将差异程度判断为有差异或者无差异,这就是显著性水平。

二、假设检验基本步骤
  1. 提出原假设和备择假设
  2. 确定适当的检验统计量
  3. 规定显著性水平
  4. 计算检验统计量的值
  5. 做出决策
三、显著性水平与拒绝域

在这里插入图片描述

四、单样本t检验
  1. 假设样本服从t分布,原假设为总体均值等于μ0
  2. 备择假设为总体均值不等于μ0
  3. 先计算样本均值x,样本标准差σ
  4. 检验统计量如下为t = (x-μ0)/(σ/√n)
  5. 根据计算出来的P值来判断是否拒绝原假设,例如P值大于原显著水平,则无法拒绝原假设,否则拒绝原假设,接受备择假设。显著性水平可以理解为拒绝原假设的概率。这里以0.05作为判断标准,若p值大于0.05 则表示接受原假设,否则拒绝原假设。

代码实战:

import pandas as pd
import statsmodels.api as sm

#单样本t检
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值