题目描述
由数字00组成的方阵中,有一任意形状闭合圈,闭合圈由数字11构成,围圈时只走上下左右44个方向。现要求把闭合圈内的所有空间都填写成22.例如:6 \times 66×6的方阵(n=6n=6),涂色前和涂色后的方阵如下:
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1
输入格式
每组测试数据第一行一个整数n(1 \le n \le 30)n(1≤n≤30)
接下来nn行,由00和11组成的n \times nn×n的方阵。
方阵内只有一个闭合圈,圈内至少有一个00。
//感谢黄小U饮品指出本题数据和数据格式不一样. 已修改(输入格式)
输出格式
已经填好数字22的完整方阵。
输入输出样例
输入 #1复制
6 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1
输出 #1复制
0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1
说明/提示
1 \le n \le 301≤n≤30
题目描述
由数字00组成的方阵中,有一任意形状闭合圈,闭合圈由数字11构成,围圈时只走上下左右44个方向。现要求把闭合圈内的所有空间都填写成22.例如:6 \times 66×6的方阵(n=6n=6),涂色前和涂色后的方阵如下:
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 2 2 1
1 1 1 1 1 1
输入格式
每组测试数据第一行一个整数n(1 \le n \le 30)n(1≤n≤30)
接下来nn行,由00和11组成的n \times nn×n的方阵。
方阵内只有一个闭合圈,圈内至少有一个00。
//感谢黄小U饮品指出本题数据和数据格式不一样. 已修改(输入格式)
输出格式
已经填好数字22的完整方阵。
输入输出样例
输入 #1复制
6 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1
输出 #1复制
0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1
说明/提示
1 \le n \le 301≤n≤30
上代码:
#include <bits/stdc++.h>
using namespace std;
int a[32][32],b[32][32];
int dx[5]={0,-1,1,0,0};
int dy[5]={0,0,0,-1,1};//第一个表示不动,是充数的,后面的四个分别是上下左右四个方向
int n,i,j;
void dfs(int p,int q){
int i;
if (p<0||p>n+1||q<0||q>n+1||a[p][q]!=0) return;//如果搜过头或者已经被搜过了或者本来就是墙的就往回
a[p][q]=1;//染色
for (i=1;i<=4;i++) dfs(p+dx[i],q+dy[i]);//向四个方向搜索
}
int main(){
cin>>n;
for (i=1;i<=n;i++)
for (j=1;j<=n;j++){
cin>>b[i][j];//其实不拿两个数组也可以,不过我喜欢啦
if (b[i][j]==0) a[i][j]=0;
else a[i][j]=2;
}
dfs(0,0);//搜索 从0,0开始搜
for (i=1;i<=n;i++){
for (j=1;j<=n;j++)
if (a[i][j]==0) cout<<2<<' ';//如果染过色以后i,j那个地方还是0,说明没有搜到,就是周围有墙,当然就是被围住了,然后输出2
else cout<<b[i][j]<<' ';//因为被染色了,本来没有被围住的水和墙都染成了1,所以就输出b[i][j]
cout<<'\n';//换行
}
}