【C++天梯计划】1.9 回溯法(bark tracking method)

🎆🎉🎉🎉🎉🎉🎉🎉🎉🎉🎉🎆
今天我要开启一个新计划----【C++天梯计划】
目的是通过天梯计划,通过题目和知识点串联的方式,完成C++复习与巩固。

什么是回溯法?

回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

回溯法思想

在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。

若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

回溯法解题步骤

用回溯法解题通常包含以下3个步骤:

  1. 针对所给问题,定义问题的解空间
  2. 确定易于搜索的解空间结构
  3. 以深度优先方式所搜解空间,并在搜索过程中用剪枝函数避免无效搜索。

算法框架

问题的解空间

应用回溯法求解问题时,首先应明确定义问题的解空间,该解空间应至少包含问题的一个最优解。例如,对于有n种物品的 0-1 背包问题,其解空间由长度为n的 0-1 向量组成,该解空间包含了对变量的所有可能的0-1 赋值。当 n=3 时,其解空间是{ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) }
在定义了问题的解空间后,还需要将解空间有效地组织起来,使得回溯法能方便地搜索整个解空间,通常将解空间组织成树或图的形式。例如,对于n= 3的0-1 背包问题,其解空间可以用一棵完全二叉树表示,从树根到叶子结点的任意一条路径可表示解空间中的一个元素,如从根结点A到结点J的路径对应于解空间中的一个元素(1, 0, 1)。

回溯法解题的关键要素

确定了问题的解空间结构后,回溯法将从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。开始结点成为活结点,同时也成为扩展结点。在当前的扩展结点处,向纵深方向搜索并移至一个新结点,这个新结点就成为一个新的活结点,并成为当前的扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前的扩展结点就成为死结点。此时应往回移动(回溯)至最近的一个活结点处,并使其成为当前的扩展结点。回溯法以上述工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已无活结点时为止。
运用回溯法解题的关键要素有以下三点:
(1) 针对给定的问题,定义问题的解空间;
(2) 确定易于搜索的解空间结构;
(3) 以深度优先方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
递归和迭代回溯
一般情况下可以用递归函数实现回溯法,递归函数模板如下:

void BackTrace(int t) {
if(t>n)
Output(x);
else
for(int i = f (n, t); i <= g (n, t); i++ ) {
x[t] = h(i);
if(Constraint(t) && Bound (t))
BackTrace(t+1);
}
}

其中,t 表示递归深度,即当前扩展结点在解空间树中的深度;n 用来控制递归深度,即解空间树的高度。当 t>n时,算法已搜索到一个叶子结点,此时由函数Output(x)对得到的可行解x进行记录或输出处理。用 f(n, t)和 g(n, t)分别表示在当前扩展结点处未搜索过的子树的起始编号和终止编号;h(i)表示在当前扩展结点处x[t] 的第i个可选值;函数 Constraint(t)和 Bound(t)分别表示当前扩展结点处的约束函数和限界函数。若函数 Constraint(t)的返回值为真,则表示当前扩展结点处x[1:t] 的取值满足问题的约束条件;否则不满足问题的约束条件。若函数Bound(t)的返回值为真,则表示在当前扩展结点处x[1:t] 的取值尚未使目标函数越界,还需由BackTrace(t+1)对其相应的子树做进一步地搜索;否则,在当前扩展结点处x[1:t]的取值已使目标函数越界,可剪去相应的子树。
采用迭代的方式也可实现回溯算法,迭代回溯算法的模板如下:

void IterativeBackTrace(void) {
int t = 1;
while(t>0) {
if(f(n, t) <= g( n, t))
for(int i = f(n, t); i <= g(n, t); i++ ) {
x[t] = h(i);
if(Constraint(t) && Bound(t)) {
if ( Solution(t))
Output(x);
else
t++;
}
}
else t− −;
}
}

在上述迭代算法中,用Solution(t)判断在当前扩展结点处是否已得到问题的一个可行解,若其返回值为真,则表示在当前扩展结点处x[1:t] 是问题的一个可行解;否则表示在当前扩展结点处x[1:t]只是问题的一个部分解,还需要向纵深方向继续搜索。用回溯法解题的一个显著特征是问题的解空间是在搜索过程中动态生成的,在任何时刻算法只保存从根结点到当前扩展结点的路径。如果在解空间树中,从根结点到叶子结点的最长路径长度为 h(n),则回溯法所需的计算空间复杂度为 O(h(n)),而显式地存储整个解空间复杂度则需要O(2h(n))或O(h(n)!)。

子集树与排列树

当给定的问题是从n个元素的集合S中找出满足某种性质的子集时,相应的解空间树称为子集树。例如,n个物品的0-1 背包问题所对应的解空间树是一棵子集树,该类树通常有2n个叶子结点,总结点数为2n+1- 1,遍历子集树的任何算法需要的计算时间复杂度均为O(2n)。
回溯法搜索子集树的一般算法描述如下:
void BackTrace(int t) {
if(t>n)
Output(x);
else
for(int i = 0; i <= n; i++) {
x[t] = i;
if(Contraint(t) && Bound(t))
BackTrace (t + 1);
}
}
当给定的问题是确定 n 个元素满足某种性质的排列时,对应的解空间树称为排列树。排列树通常有n! 个叶子结点,遍历排列树需要的计算时间复杂度为O(n!)。
回溯法搜索排列树的算法模板如下:

void BackTrace(int t) {
if(t>n)
Output(x);
else
for(int i = 0; i <= n; i++) {
Swap(x[t], x[i]);
if(Contraint (t) && Bound (t))
BackTrace(t + 1);
Swap(x[t], x[i]);
}
}

例题1:八皇后

题目描述

会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。

输入

第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)

输出

输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。

样例

输入
2
1
92
输出
15863724
84136275

代码:
#include<iostream>
using namespace std;
int n;
int h[20][20], s[20], lx[40], rx[40]; //h[][]是存放排列的数组, s[]横行被占用, lx左斜  rx右斜行
int cnt = 0, r[100][10]; //r存放第i个结果,每行就是对应的皇后串
void print()
{
    cnt++;
    for(int i = 0; i < n; i++)
    {
        for(int j = 0; j < n; j++)
        {
            if(h[i][j]) r[cnt][i] = j + 1; //j从0开始计数的,所以要加1
        }

    }

}
void dfs(int x) //放置第x列的皇后.从0遍历到n-1列,这里就是0~7,仔细看题目结果,是按列排序输出结果的,刚开始按行输出结果不对.
{
    if(x == n) print();
    else if(x < n)
    {
        for(int i = 0; i < n; i++)
        {
            if(s[i] == 0 && lx[x + i] == 0 && rx[i - x + n] == 0) //若h[i][x]的横\斜都是0,说明可以放置
            {
                h[x][i] = 1; //为x,i放置皇后 按行遍历
                s[i] = lx[x+i] = rx[i - x + n] = 1; //将标志设为1
                dfs(x+1);
                h[x][i] = 0;
                s[i] = lx[x+i] = rx[i - x + n] = 0; //将标志设为0
            }
        }
    }


}
int main()
{
    //cin >> n;
    n = 8;
    dfs(0);
    int k, a;
    cin >> k;
    for(int i = 0; i < k; i++)
    {
        cin >> a;
        for(int j = 0; j < n; j++) cout << r[a][j];
        cout << endl;
    }
    return 0;
}

例题2:选数

题目描述

已知n(1<=n<=20)个整数x1,x2,…,(1<=xi<=5000000),以及一个整数k(k<n)。从n个整数中任选k个整数相加,可分别得到一系列的和。现在,要求你计算出和为素数共有多少种。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=22
3+7+19=29
7+12+19=38
3+12+19=34
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数:3+7+19=29。

输入

第一行两个空格隔开的整数 n,k(1≤n≤20,k<n)。
第二行 n 个整数,分别为x1,x2…xn(1≤xi≤5*106)

输出

输出一个整数,表示种类数。

样例

输入
4 3
3 7 12 19
输出
1

代码:
#include <bits/stdc++.h>
using namespace std;
int n,k,a[30];
int ans;
//n个数选k个数求和,要求和为素数
bool prime(int n){
    if(n <= 1) return false;
    for(int i = 2;i <= sqrt(n);i++){
        if(n % i == 0) return false;
    }
    return true;
}
//cnt:选了几个数,sum:选出的结果的和
void dfs(int x,int cnt,int sum){
    if(cnt == k){ //注意要先判断选满k个数的情况
        if(prime(sum)) ans++;
        return;
    }
    if(x > n) return;//下标越界
    dfs(x+1,cnt+1,sum+a[x]);//选择当前数
    dfs(x+1,cnt,sum);//不选当前数
}
int main()
{
    cin>>n>>k;
    for(int i = 1;i <= n;i++) cin>>a[i];

    dfs(1,0,0);//从第1个数开始选择k个数
    cout<<ans;
    return 0;
}

投票

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值