问题描述
我们把一个数称为有趣的,当且仅当:
1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
3. 最高位数字不为0。
因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。
输入格式
输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。
输出格式
输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。
样例输入
4
样例输出
3
刚拿到的时候也是一脸懵逼
可能是做这类题目做的太少了
大体思路是动态规划,根据递推关系求解,难点还是找出这些状态及递推关系
看了一下网上的解答,主要记录一下自己遇到的问题
https://blog.csdn.net/more_ugly_less_bug/article/details/61617916
状态0表示出现了2,还未出现0和3,只出现了2,可使用0、2、3。
状态1表示出现了0、2,可使用0、1、2 。
状态2表示出现了0、1、2且未出现3,可使用1、2、3 。
状态3表示出现了2、3且未出现0,可使用0、3。
状态4表示出现了0、2、3,未出现1,可使用0、1、3。
状态5表示出现了0、1、2、3,可使用1、3 。
step[0][0]=1;
for(int i=1;i<n;i++)
{
step[i][0]=step[i-1][0];
step[i][1]=(step[i-1][0]+2*step[i-1][1])%modnum;
step[i][2]=(step[i-1][0]+step[i-1][2])%modnum;
step[i][3]=(step[i-1][1]+step[i-1][3]*2)%modnum;
step[i][4]=(step[i-1][1]+step[i-1][2]+step[i-1][4]*2)%modnum;
step[i][5]=(step[i-1][3]+step[i-1][4]+step[i-1][5]*2)%modnum;
}
下面是所遇到的问题
1.第一次得分20
主要是没有考虑到计算的过程中超出了长度,造成的后果就是后面的计算结果step[999][5]=999
不断减半查,结果查到25的时候发现结果已经炸了,发现了问题的所在
2.第二次得分40
这一次主要是在定义数组的时候定义为int
应为当时看到所给出的余数也不是很大,没有考虑到会超出int的表示范围
为此我还特意去求证了一番
上面是所给出的余数,下面是INT的表示范围(由图可见int的表示范围确实比所给出的余数大)
那究竟是为什么会导致结果不对呢
猜测可能是在前一次计算的时候没有超过,但很接近余数的最大值,在后一次的计算中超过了int的最大值,而取余操作在计算之后,所以导致结果不正确。
之后改为了long,结果和int一模一样
查了一下资料
发现int和long都是4字节的,表示范围一样
之后改成了long long,通过了
自上而下
INT_MAX
INT_MIN
LONG_MAX
LLONG_MAX
亲测,这里并不需要什么头文件