SparkStreaming与kafka的整合小结

本文总结了Spark Streaming与Kafka整合的步骤,强调了版本匹配的重要性,以及在开发中可能会遇到的错误,如依赖导入错误和配置问题。正确配置包括在pom.xml中导入相应版本的依赖,编写对应版本的程序,并可能需要调整Kafka的server.properties文件以解决连接和偏移问题。为避免问题,建议重新创建Zookeeper中的topic。
摘要由CSDN通过智能技术生成

Spark的流处理,不光是分批还是进行结构化,都能很好的处理来自kafka或socket的数据。接下来说说spark与kafka整合的步骤,以免发生各种各样的错误(原本大数据的生态多,spark的版本更新和功能迭代快,为了少出现错误,最好遵循原版说明)

1.首先你要确认好你的spark版本和kafka的版本,因为不同的版本有可能导入的包不一样和程序写法不一样

 

2.开发时pom.xml导入相应的依赖

由于我之前忘了导入这个包

spark-sql-kafka-0-10_${scala.binary.version}

出现各种错误,报的错误根本都是错误,这种最坑爹了的。所以大家一定要小心点儿

3.编写相对于版本的程序,做好前2步基本不会出现问题

(程序完美运行)

 

强调一下,如果出现连接问题或者是偏移。建议更改kafka的conf下的server.properties文件

更改为:最后建议删除zookeeper中相应的topic,重现创建

offsets.topic.replication.factor=3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值