拓扑排序与入度为0的结点算法解析及实现

282 篇文章 13 订阅 ¥9.90 ¥99.00
229 篇文章 26 订阅 ¥9.90 ¥99.00
121 篇文章 0 订阅 ¥9.90 ¥99.00

拓扑排序与入度为0的结点算法解析及实现

拓扑排序是一种用于有向无环图(DAG, Directed Acyclic Graph)的重要操作,它可以对图中的结点进行排序,使得对于每一条有向边 (u, v),顶点 u 在排序中都出现在顶点 v 之前。本文介绍一种通过重复寻找入度为0的结点,并删除该结点及其发出的边来实现拓扑排序的方法,并分析其时间复杂度。同时,也将讨论如果图中包含环路将会发生什么情况。
在这里插入图片描述

算法思想

  1. 初始化

    • 计算每个结点的入度。
    • 将所有入度为0的结点加入一个队列。
  2. 排序过程

    • 当队列不为空时,执行以下步骤:
      1. 从队列中取出一个入度为0的结点,将其加入拓扑排序结果中。
      2. 对该结点的每一个邻接结点,将其入度减1。
      3. 如果某个邻接结点的入度减为0,则将其加入队列。
    • 如果队列为空,但拓扑排序结果中的结点少于图中的结点总数,则说明图中存在环路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醉心编码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值