jupyter (ptyhon|R)

安装jupyter

c  支持

apt-get install build-essential python3-dev
sudo apt-get install python-dev
sudo apt-get install mopidy

1 pip install jupyter (python3+ use pip3)
2 启动  jupyter notebook

安装irkernel 支持R(可用版本3.2.2)

<span style="font-size:14px;"><code class="hljs">install.packages(c(<span class="hljs-string">'pbdZMQ'</span>, <span class="hljs-string">'devtools'</span>))</code></span>

http://irkernel.github.io/installation/#source-panel

1 sudo apt-get install libzmq3-dev

2 R 安装github 上的插件

install.packages(c('pbdZMQ', 'devtools'))
devtools::install_github(paste0('IRkernel/', c('repr', 'IRdisplay', 'IRkernel')))

3 启动安装sudo apt-get install python-sklearn

IRkernel::installspec()

 错误
ImportError: No module named jsonschema
sudo pip install jsonschema


/usr/bin/python2: No module named wcwidth; 'ipykernel' is a package and cannot be directly executed
sudo python2 -m ipykernel install --user


机器学习库

sudo apt-get install python-sklearn

 

Jupyter Notebook 提供了一个强大的交互式环境用于 Python 编程、数据分析、可视化等多种用途,包括模型预测。在 Jupyter Notebook 中进行预测模型构建通常涉及以下几个关键步骤:数据探索、特征工程、模型训练、评估和应用预测。以下是这些步骤的具体解释: ### 1. 数据探索与准备 首先,加载必要的库和数据集。比如使用 pandas 来处理 CSV 文件或其他数据源: ```python import pandas as pd data = pd.read_csv('your_data.csv') ``` 接下来,理解数据结构、缺失值、异常值等特性: ```python print(data.describe()) print(data.isnull().sum()) ``` ### 2. 特征工程 特征工程是预测任务的关键部分,涉及到数据清洗、转换和选择。这一步通常包括处理缺失值、编码分类变量、删除无关特征等: ```python # 删除无关列 data = data.drop(['unrelated_column'], axis=1) # 缺失值填充或删除 data = data.fillna(method='ffill') # 使用前一个值填充缺失值 # 或者 data = data.dropna() # 分离特征和目标变量 X = data.drop('target_variable', axis=1) y = data['target_variable'] ``` ### 3. 模型选择与训练 选择合适的预测模型。这里我们举几个例子,如线性回归、决策树、随机森林、支持向量机、神经网络等。 ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 训练模型 model = LinearRegression() model.fit(X_train, y_train) ``` ### 4. 模型评估 评估模型性能。常用指标包括准确率、精确度、召回率、F1分数等。对于回归模型,则关注 RMSE(均方根误差)、R² 等指标: ```python from sklearn.metrics import mean_squared_error, r2_score predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) r2 = r2_score(y_test, predictions) print(f'Mean Squared Error: {mse}') print(f'R^2 Score: {r2}') ``` ### 5. 应用预测 最后,模型可以在新的数据上做出预测: ```python new_data = pd.DataFrame({'feature_1': [value], 'feature_2': [value], ...}) prediction = model.predict(new_data) print(f'Prediction: {prediction}') ``` ### 相关问题: 1. 预测模型如何优化提高准确性? 2. 在Jupyter Notebook中如何可视化预测结果? 3. 是否存在更适合时间序列预测的模型和工具? 此流程仅为基本框架,实际项目中可能还需要考虑更多的细节和调整,如交叉验证、超参数调优、集成学习等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值