RNN循环神经网络的参数梯度计算

RNN循环神经网络的参数梯度计算

本博客记录本人学习,如果错误烦请指正哈~

循环神经网络(Rerrent Neural Network ,RNN),它对具有序列特性的数据非常有效,它能挖掘数据中的时序信息及语义信息,利用RNN这种能力,使深度学习模型在解决语音识别、语言模型、机器翻译以及时序分析等NLP领域的问题时有所突破。

假设使用全连接网络处理语音识别问题,就会出现什么问题?识别出的输入语音没有上下问联系,而RNN的输入不止和当前时刻输入有关系,和前一刻输入也有关系,其结构图及参数计算如下图在这里插入图片描述
在这里插入图片描述

参考:参考文章

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值