VisonTransformer
文章平均质量分 95
有关VIT相关学习笔记及心得
lzzzzzzm
未来可期的博主
展开
-
VisionTransformer(四)ChangeFormer—— 纯Transformer的变化检测
纯Transformer的变化检测前言一、ChangeFormer提取特征的Transformer Block下采样Downsampling Block提取特征Transformer Block融合位置编码的MLP模块特征图差异计算Difference ModuleMLP Decoder差异特征融合残差块设计总结前言上次介绍过BIT,是一种基于Transformer孪生网络的变化检测结构,但它的设计思想是利用一个卷积网络提取特征图,将特征图像NL...原创 2022-05-04 17:00:56 · 4637 阅读 · 10 评论 -
VisionTransformer(三)BIT—— 基于孪生网络的变化检测结构分析
基于孪生网络的变化检测文章目录系列文章目录 前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言变化检测相较于其他cv任务来说,应该属于一个较为小众的领域了,但因为要需要复现BIT这篇论文,并且最近也在做变化检测相关的任务,所以就来讲解一下这篇论文和其设计思路。因为要复现的原因,所以这篇文章会对网络结构做一个详细的解读。一、孪生网络Siamese Network在介绍BIT之前,简单介绍一下孪生网络的概念。孪生网络其实主要有两原创 2022-04-15 23:15:20 · 15252 阅读 · 18 评论 -
VisionTransformer(二)—— 多头注意力-Multi-Head Attention及其实现
多头注意力-Multi-Head Attention文章目录系列文章目录 前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言之前说到VIT中,个人觉得值得学习的地方有两处,一处是Patch Embedding即如何将image当成context处理。第二个就是今天要说的多头注意力-Multi-Head Attention。VisionTransformer(一)—— Embedding Patched与Word embeddin原创 2022-02-18 22:40:41 · 12331 阅读 · 12 评论 -
VisionTransformer(一)—— Embedding Patched与Word embedding及其实现
Embedding Patched与Word embedding文章目录系列文章目录 前言 一、pandas是什么? 二、使用步骤 1.引入库 2.读入数据 总结前言VisionTransformer可以说火到不得不会的程度,而本人之前其实对NLP领域了解不是很多,在学习中,认为在VIT论文里比较值得学习的地方有两点,一个是对图片的预处理成image token的Embedding Patched,另一个则是Transformer模块里的多头注意力模块,这次先讲原创 2022-02-14 14:46:10 · 8583 阅读 · 11 评论