整除问题——给定n,a,求出最大的k,使得n!可以被a^k整除,但不能被a^(k+1)整除

该博客探讨了一个整除问题,目标是找到最大的整数k,使得n的阶乘(n!)能够被数a的k次幂(a^k)整除,但不能被a的(k+1)次幂(a^(k+1))整除。文章可能涉及素数和整除性质的分析。
摘要由CSDN通过智能技术生成

整除问题——给定n,a,求出最大的k,使得n!可以被a^k整除,但不能被a^(k+1)整除

要求:输入两个整数n(2<=n<=1000),a(2<=a<=1000) 输出一个整数

输入示例:6 10
输出示例:1

实现代码:
#include <stdio.h>
bool a[1001];
int b[1001]; 
int size;
void Init(){  
        size =0;  
        for(int i=2;i<=1000;i++){  
            if(a[i]==true) continue;
            b[size++]=i;  
            if(a[i]==false){  
                for(int j=i*i;j<=1000;j+=i){  
                    a[j]=true;                
                }  
            }  
        }          
} //求1~1000所有素数 
int cnt1[1001],cnt2[1001];  
int main(int argc, char *argv[])
{
	int n,a;
	while(scanf("%d%d",&n,&a)==2){
		Init();
		for(int i=0;i<size;i++){
			
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值