Deep Leaning 常用要点总结

本文总结了深度学习中的初始化方法,包括零初始化、随机初始化和he初始化,并对比了它们的效果。此外,还详细介绍了正向传播计算缓存、反向传播计算梯度以及神经网络中矩阵维度的计算规则,对于理解神经网络的运作机制具有帮助。
摘要由CSDN通过智能技术生成

1 初始化

1.1 初始化方法

1.1.1零初始化

  • 一般来说,初始化所有的权值为零会导致网络不对称。这意味着每一层中的每一个神经元都将学习相同的东西,就像训练一个神经网络,每一层都有 n [ l ] = 1 n[l]=1 n[l]=1,而这个网络并不比逻辑回归等线性分类器更强大。
  • 需要记住的是:
  • 1.权值 W [ l ] W[l] W[l]应随机初始化以打破对称性。
  • 2. b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值