Deep Leaning 学习笔记之改善神经网络的超参数(1.4)—— 正则、dropout、梯度检验实例

本文详细介绍了深度学习中提高神经网络性能的两种重要技术——正则化(L2正则化)和dropout,并通过实例解释了它们在前向传播和反向传播中的应用。同时,还探讨了梯度检验的概念和在N维神经网络中的实施,以确保梯度计算的准确性。
摘要由CSDN通过智能技术生成

1 正则化

1.1 L2正则化函数
def compute_cost_with_regularization(A3, Y, parameters, lambd):
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]
    
    cross_entropy_cost = compute_cost(A3, Y)
    L2_regularization_cost=lambd/(2*m)*(np.sum(np.square(W1))+np.sum(np.square(W2))+np.sum(np.square(W3)))
    cost = cross_entropy_cost + L2_regularization_cost
    return cost
1.2 梯度下降
def backward_propagation_with_regularization(X, Y, cache, lambd):
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    
    dW3 = 1./m * np.dot(dZ3, A2.T) + lambd/m*W3
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    
    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./m * np.dot(dZ2, A1.T) + lambd/m*W2
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1./m * np.dot(dZ1, X.T) + lambd/m*W1
    db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients

2 dropout

2.1 方程式

d3 = np.random.rand( a3.shape[0] , a3.shape[1] ) < keep_prop
(生成一个随机矩阵,当d3的元素值小于keep_prop时,为1,否则为0的 0-1矩阵)
a3 = np.multiply( a3 , d3 ) 也就是点乘, a3 ∗ * = = = d3
a3 = a3 / keep_prop

2.2 函数(forword + backword propagation)
2.2.1 forword propagation with dropout
def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):
    np.random.seed(1)
    
    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = relu(Z1)
### Step 1: initialize matrix D1 = np.random.rand(..., ...)
    D1 = np.random.rand(A1.shape[0],A1.shape[1])      
### Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold)
    D1 = D1<keep_prob                                
### Step 3: shut down some neurons of A1
    A1 = np.multiply(A1,D1)                                        
### Step 4: scale the value of neurons that haven't been shut down
    A1 = A1/keep_prob                                 
    Z2 = np.dot(W2, A1) + b2
    A2 = relu(Z2)
### Step 1: initialize matrix D2 = np.random.rand(..., ...)
    D2 = np.random.rand(A2.shape[0],A2.shape[1]) 
### Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold)
    D2 = D2<keep_prob                                         
### Step 3: shut down some neurons of A2
    A2 = np.multiply(A2,D2)
### Step 4: scale the value of neurons that haven't been shut down
    A2 = A2/keep_prob                                         
    Z3 = np.dot(W3, A2) + b3
    A3 = sigmoid(Z3)
    
    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)
    
    return A3, cache
2.2.2 backword propagation with dropout
def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = 1./m * np.dot(dZ3, A2.T)
    db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    dA2 = np.dot(W3.T, dZ3)
### Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation
    dA2 = dA2*D2            
### Step 2: Scale the value of neurons that haven't been shut down
    dA2 = dA2/keep_prob              
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1./m * np.dot(dZ2, A1.T)
    db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    
    dA1 = np.dot(W2.T, dZ2)
### Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation
    dA1 = dA1*D1              
### Step 2: Scale the value of neurons that haven't been shut down
    dA1 = dA1/keep_prob              
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1./m * np.dot(dZ1, X.T)
    db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    
    return gradients

3 Gradient Checking 梯度检验

3.1 概念
  • 计算
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值