Dropout 层的python实现(内含dropout函数及带dropout的前向反向传播函数)

本文介绍了如何在Python中实现Dropout层,包括 Dropout 函数的详细解释以及带有 Dropout 的前向和反向传播过程。
摘要由CSDN通过智能技术生成

参考:https://zhuanlan.zhihu.com/p/29592806


# -*- coding:utf-8 -*-
import numpy as np
def dropout(X, keep_prob = 0.5):
    """
    :param X: input
    :param keep_prob:
    :return:
    """

    D = np.random.rand(X.shape[0], X.shape[1]) # step1: initialize matrix d
    D = D < keep_prob # step2: convert entries of d
    X = X * D # step3: shut down some neuron
    X = X/keep_prob #step4: scale the value of neuron

    return X

'''
numpy.random.rand(do,d1, ...,dn)
create an array of the given shape and populate it with random samples from a uniform distribution over[0,1)
'''

# 带 dropout的前向后向传播
def forward_propogation_with_dropout(X, parameters, keep_prob = 0.5):
    """
    Implemente the forward propagation : LINERE->
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值