欧几里德算法&&扩展欧几里德算法 (小推+模板)

欧几里德可以小推一下;

设 a=kb+r; 有 r=a%b; 设d=gcd(a,b),有 d|a,d|b ; 又知 r=a-kb,得r/d=a/d+k*b/d;可得r/d为整数,因此 d|r, 因此b,r有共同约数有 d|b ==> d|c已经证了一半,因为只能证出当d|b ==> d|c ,还需要证明d|c ==> d|c; 才能证明 他们的约数相同,设d'为b,r,的公约数,证明同上;

扩展欧几里德可以根据公式小推一下:

ax+by=c;

由欧几里德算法知:gcd(a,b)=gcd(b,a%b);

==>bx'+(a%b)y'=c;==> ax+by=bx'+(a%b)y' 为什莫让他们相等,是为了求出递推式,让某次系数为0为结束条件,以求得x,y系数

化简得 ax+by=ay'+(x'-[a/b]*y')b; [ ]为对里面的数向上取整==》x=y',y=x'-[a/b]*y',直接根据公式理解代码即可

欧几里德算法:

#include <iostream>
#include <stdio.h>
using namespace std;
int gcd (int m,int n)
{
    if (!n)
    return m;
    else
    return gcd(n,m%n);

}
int main()
{
     int m,n;
    while(cin>>m>>n)
    {
     cout<<gcd(m,n)<<endl;
    }
    return 0;
}


扩展欧几里德算法:

#include <iostream>
#include <stdio.h>
using namespace std;
int exgcd(int a,int b,int &x,int &y)
{
     if (!b)
     {
        x=1;
        y=0;
        return a;
     }
     int d=exgcd(b,a%b,x,y);
     int temp=x;
     x=y;
     y=temp-a/b*y;
     return d;
}
int main()
{
    int a,b,c,x,y;
    while (scanf("%d%d%d",&a,&b,&c)!=EOF)
    {
       int d=exgcd(a,b,x,y); //求gcd(a,b),求x,y; 
       if (c%d!=0)
       printf("don't exist\n");
       else
       {
         a/=d;
         b/=d;
         c/=d;
         x*=c;
         y*=c;
         printf("special answer: %d %d\n",x,y); //求特解
         printf("usual answer: %d %d\n",x+b,y-a); //求通解
       }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值