Spark实战--学习UDF

在开始正式数据处理之前,我觉得有必要去学习理解下UDF。

UDF

UDF全称User-Defined Functions,用户自定义函数,是Spark SQL的一项功能,用于定义新的基于列的函数,这些函数扩展了Spark SQL的DSL用于转换数据集的词汇表。

我在databricks上找到一个比较简单理解的入门栗子:

Register the function as a UDF

1val squared = (s: Int) => {
2  s * s
3}
4spark.udf.register("square", squared)

Call the UDF in Spark SQL

1spark.range(1, 20).registerTempTable("test")
2%sql select id, square(id) as id_squared from test

我理解就是先定义一个函数squared,返回输入数字的平方,然后register,并绑定square方法名为square,然后就在Spark SQL中直接使用square方法。

实例一:温度转化

 1import org.apache.spark.sql.SparkSession
2import org.apache.spark.SparkConf
3
4object ScalaUDFExample {
5  def main(args: Array[String]) {
6    val conf       = new SparkConf().setAppName("Scala UDF Example")
7    val spark      = SparkSession.builder().enableHiveSupport().config(conf).getOrCreate() 
8
9    val ds = spark.read.json("temperatures.json")
10    ds.createOrReplaceTempView("citytemps")
11
12    // Register the UDF with our SparkSession 
13    spark.udf.register("CTOF", (degreesCelcius: Double) => ((degreesCelcius * 9.0 / 5.0) + 32.0))
14
15    spark.sql("SELECT city, CTOF(avgLow) AS avgLowF, CTOF(avgHigh) AS avgHighF FROM citytemps").show()
16  }
17}

我们将定义一个 UDF 来将以下 JSON 数据中的温度从摄氏度(degrees Celsius)转换为华氏度(degrees Fahrenheit):

1{"city":"St. John's","avgHigh":8.7,"avgLow":0.6}
2{"city":"Charlottetown","avgHigh":9.7,"avgLow":0.9}
3{"city":"Halifax","avgHigh":11.0,"avgLow":1.6}
4{"city":"Fredericton","avgHigh":11.2,"avgLow":-0.5}
5{"city":"Quebec","avgHigh":9.0,"avgLow":-1.0}
6{"city":"Montreal","avgHigh":11.1,"avgLow":1.4}
7...

实例二:时间转化

 1case class Purchase(customer_id: Int, purchase_id: Int, date: String, time: String, tz: String, amount:Double)
2
3val x = sc.parallelize(Array(
4  Purchase(123, 234, "2007-12-12", "20:50", "UTC", 500.99),
5  Purchase(123, 247, "2007-12-12", "15:30", "PST", 300.22),
6  Purchase(189, 254, "2007-12-13", "00:50", "EST", 122.19),
7  Purchase(187, 299, "2007-12-12", "07:30", "UTC", 524.37)
8))
9
10val df = sqlContext.createDataFrame(x)
11df.registerTempTable("df")

自定义函数

1def makeDT(date: String, time: String, tz: String) = s"$date $time $tz"
2sqlContext.udf.register("makeDt", makeDT(_:String,_:String,_:String))
3
4// Now we can use our function directly in SparkSQL.
5sqlContext.sql("SELECT amount, makeDt(date, time, tz) from df").take(2)
6// but not outside
7df.select($"customer_id", makeDt($"date", $"time", $"tz"), $"amount").take(2) // fails

如果想要在SQL外面使用,必须通过spark.sql.function.udf来创建UDF

1import org.apache.spark.sql.functions.udf
2val makeDt = udf(makeDT(_:String,_:String,_:String))
3// now this works
4df.select($"customer_id", makeDt($"date", $"time", $"tz"), $"amount").take(2)

实践操作

写一个UDF来将一些Int数字分类

 1val formatDistribution = (view: Int) => {
2  if (view < 10) {
3    "<10"
4  } else if (view <= 100) {
5    "10~100"
6  } else if (view <= 1000) {
7    "100~1K"
8  } else if (view <= 10000) {
9    "1K~10K"
10  } else if (view <= 100000) {
11    "10K~100K"
12  } else {
13    ">100K"
14  }
15}

注册:

1session.udf.register("formatDistribution", UDF.formatDistribution)

SQL:

1session.sql("select user_id, formatDistribution(variance_digg_count) as variance from video")

写到这里,再回顾UDF,我感觉这就像是去为了方便做一个分类转化等操作,和Python里面的函数一样,只不过这里的UDF一般特指Spark SQL里面使用的函数。然后发现这里和SQL中的自定义函数挺像的:

 1CREATE FUNCTION [函数所有者.]<函数名称> 
2(   
3    -- 添加函数所需的参数,可以没有参数
4    [<@param1> <参数类型>]
5    [,<@param1> <参数类型>]…
6)
7RETURNS TABLE 
8AS
9RETURN 
10(
11    -- 查询返回的SQL语句
12    SELECT查询语句
13)
 1/*
2* 创建内联表值函数,查询交易总额大于1W的开户人个人信息
3*/
4create function getCustInfo()
5returns @CustInfo table  --返回table类型
6(
7    --账户ID
8    CustID int,
9    --帐户名称
10    CustName varchar(20) not null,
11    --身份证号
12    IDCard varchar(18),
13    --电话
14    TelePhone varchar(13) not null,
15    --地址
16    Address varchar(50) default('地址不详')
17)
18as
19begin
20    --为table表赋值
21    insert into @CustInfo
22    select CustID,CustName,IDCard,TelePhone,Address from AccountInfo 
23    where CustID in (select CustID from CardInfo 
24    where CardID in (select CardID from TransInfo group by CardID,transID,TransType,TransMoney,TransDate having sum(TransMoney)>10000))
25    return
26end
27go
28-- 调用内联表值函数
29select * from getCustInfo()
30go

好像有异曲同工之妙~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值