Keras 训练简单的深度神经网络

机器学习训练营最近的作业都是使用Keras,所以最近去翻了下文档,这里记录一下学习栗子。(官网有中文文档)

不多BB,直接上代码,注释已经写得很清楚了。

#!/usr/bin/env python  
# -*- coding: utf-8 -*-

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop


batch_size = 128  # 每个梯度更新的样本数
num_classes = 10  # 类的总数
epochs = 20       # 迭代次数

# load the MNIST dataset
# 初次运行会先下载文件
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test sample')

# 类向量到二元类矩阵的转换
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

# Keras 的核心数据结构是 model,一种组织网络层的方式。最简单的模型是 Sequential 顺序模型,它由多个网络层线性堆叠。
model = Sequential()

# 可以简单地使用 .add() 来堆叠模型:
# activation: 激活函数, relu: 线性修正单元, softmax 激活函数
model.add(Dense(512, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))

model.summary()

# 在完成了模型的构建后, 可以使用 .compile() 来配置学习过程
model.compile(loss='categorical_crossentropy',
              optimizer=RMSprop(),
              metrics=['accuracy'])

# x_train 和 y_train 是 Numpy 数组 -- 就像在 Scikit-Learn API 中一样。
history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,  # 日志显示模式
                    validation_data=(x_test, y_test))  # 验证数据

# 评估模型性能
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss: ', score[0])
print('Test accuracy: ', score[1])

# 对新的数据生成预测
classes = model.predict(x_test, batch_size=128)

下面是部分输出

Using TensorFlow backend.
60000 train samples
10000 test sample
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_1 (Dense)              (None, 512)               401920    
_________________________________________________________________
dropout_1 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 512)               262656    
_________________________________________________________________
dropout_2 (Dropout)          (None, 512)               0         
_________________________________________________________________
dense_3 (Dense)              (None, 10)                5130      
=================================================================
Total params: 669,706
Trainable params: 669,706
Non-trainable params: 0
_________________________________________________________________
Train on 60000 samples, validate on 10000 samples
Epoch 1/20

###

Test loss:  0.11462802259046188
Test accuracy:  0.9826

对数据训练20次得到的结果,准确率高达98.26%,还是挺6的。

但是在运行模型中,这台13年的Mac CPU直接转满,处理器是2.4 GHz Intel Core i5,感觉好吃力,果然深度学习配置要求高啊。

如果代码看不清楚,可以去阅读原文中看。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值