You will be given two sets of integers. Let's call them set A and set B. Set A contains n elements and set B contains m elements. You have to remove k1 elements from set A and k2 elements from set B so that of the remaining values no integer in set B is a multiple of any integer in set A. k1 should be in the range [0, n] and k2 in the range [0, m].
You have to find the value of (k1 + k2) such that (k1 + k2) is as low as possible. P is a multiple of Q if there is some integer K such that P = K * Q.
Suppose set A is {2, 3, 4, 5} and set B is {6, 7, 8, 9}. By removing 2 and 3 from A and 8 from B, we get the sets {4, 5} and {6, 7, 9}. Here none of the integers 6, 7 or 9 is a multiple of 4 or 5.
So for this case the answer is 3 (two from set A and one from set B).
Input starts with an integer T (≤ 50), denoting the number of test cases.
The first line of each case starts with an integer n followed by n positive integers. The second line starts with m followed by m positive integers. Both n and m will be in the range [1, 100]. Each element of the two sets will fit in a 32 bit signed integer.
For each case of input, print the case number and the result.
2
4 2 3 4 5
4 6 7 8 9
3 100 200 300
1 150
Case 1: 3
Case 2: 0
求出其最大匹配即可。
#include<iostream>
#include<cstring>
using namespace std;
int n,m,linker[105],vis[105];
int g[105][105];
bool dfs(int x)
{
for(int i=0;i<n;i++)
{
if(!vis[i]&&g[x][i])
{
vis[i]=1;
if(linker[i]==-1||dfs(linker[i]))
{
linker[i]=x;
return true;
}
}
}
return false;
}
int main()
{
int t;
cin>>t;
for(int temp=1;temp<=t;temp++)
{
memset(g,0,sizeof(g));
int cnt=0;
long a[105],b[105];
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i];
cin>>m;
for(int i=0;i<m;i++)
cin>>b[i];
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
if(b[i]%a[j]==0)
g[i][j]=1;
}
}
memset(linker,-1,sizeof(linker));
for(int i=0;i<m;i++)
{
memset(vis,0,sizeof(vis));
if(dfs(i))
cnt++;
}
cout<<"Case "<<temp<<": "<<cnt<<endl;
}
return 0;
}