Description
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
Intro
Ref Link:https://leetcode.cn/problems/validate-binary-search-tree/description/
Difficulty:Medium
Tag:Tree, DFS
Updated Date:2023-04-13
Shared By:Seiko
Test Cases
示例1:
输入:root = [2,1,3]
输出:true
示例2:
输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
树中节点数目范围在[1, 104] 内
-231 <= Node.val <= 231 - 1
思路
- 递归。本题考察二叉搜索树的性质, 二叉搜索树中每个子树都满足以上三种性质。因此,要解决整棵树是不是有效需要检查每个子树是否有效。这里就出现了先解决子问题,在回溯到大问题的现象。因此,本题可以用递归来解决。
解题步骤
- 递归退出条件: 当要考察的节点为叶子节点,即没有左右子树,此时返回true
- 递归计算: 检查根节点是否大于所有的左子树,如果大于左子树所有节点,再以根节点的左结点为根节点检查是否满足二叉搜索树的性质。检查根节点是否小于所有的右子树,如果大于右子树上的所有节点,再以根节点的右节点为根节点检查是否满足二叉搜索树的性质。
Code AC
/*
* @lc app=leetcode.cn id=98 lang=java
*
* [98] 验证二叉搜索树
*/
// @lc code=start
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
boolean isValid = true;
if (root.left != null) {
isValid &= greaterThanAllLeftBST(root, root.left);
isValid &= isValidBST(root.left);
}
if (root.right != null) {
isValid &= lessThanAllRightBST(root, root.right);
isValid &= isValidBST(root.right);
}
return isValid;
}
private boolean greaterThanAllLeftBST(TreeNode root, TreeNode node) {
if (node.right != null) {
return greaterThanAllLeftBST(root, node.right);
} else {
return root.val > node.val;
}
}
private boolean lessThanAllRightBST(TreeNode root, TreeNode node) {
if (node.left != null) {
return lessThanAllRightBST(root, node.left);
} else {
return root.val < node.val;
}
}
}
Accepted
82/82 cases passed (0 ms)
Your runtime beats 100 % of java submissions
Your memory usage beats 25.86 % of java submissions (41.2 MB)
复杂度分析
- 时间复杂度:
- 空间复杂度:
官方题解 Code AC
class Solution {
public boolean isValidBST(TreeNode root) {
return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean isValidBST(TreeNode root, long min, long max) {
if (root == null) return true;
if (root.val <= min || root.val >= max) return false;
return isValidBST(root.left, min, root.val) && isValidBST(root.right, root.val, max);
}
}
Accepted
82/82 cases passed (0 ms)
Your runtime beats 100 % of java submissions
Your memory usage beats 60.12 % of java submissions (40.9 MB)
思路
- 设计一个递归函数 helper(root, lower, upper) 来递归判断,函数表示考虑以 root 为根的子树,判断子树中所有节点的值是否都在 (l,r)(l,r)(l,r) 的范围内(注意是开区间)。如果 root 节点的值 val 不在 (l,r)(l,r)(l,r) 的范围内说明不满足条件直接返回,否则我们要继续递归调用检查它的左右子树是否满足,如果都满足才说明这是一棵二叉搜索树。
- 那么根据二叉搜索树的性质,在递归调用左子树时,我们需要把上界 upper 改为 root.val,即调用 helper(root.left, lower, root.val),因为左子树里所有节点的值均小于它的根节点的值。同理递归调用右子树时,我们需要把下界 lower 改为 root.val,即调用 helper(root.right, root.val, upper)。
- 函数递归调用的入口为 helper(root, -inf, +inf), inf 表示一个无穷大的值。
复杂度分析
- 时间复杂度:O(n)。
- 空间复杂度:O(n)。