Killing LeetCode [98] 验证二叉搜索树

Description

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左子树只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

Intro

Ref Link:https://leetcode.cn/problems/validate-binary-search-tree/description/
Difficulty:Medium
Tag:Tree, DFS
Updated Date:2023-04-13
Shared By:Seiko

Test Cases

示例1:
在这里插入图片描述

输入:root = [2,1,3]
输出:true

示例2:
在这里插入图片描述

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

提示:

树中节点数目范围在[1, 104] 内
-231 <= Node.val <= 231 - 1

思路

  • 递归。本题考察二叉搜索树的性质, 二叉搜索树中每个子树都满足以上三种性质。因此,要解决整棵树是不是有效需要检查每个子树是否有效。这里就出现了先解决子问题,在回溯到大问题的现象。因此,本题可以用递归来解决。

解题步骤

  • 递归退出条件: 当要考察的节点为叶子节点,即没有左右子树,此时返回true
  • 递归计算: 检查根节点是否大于所有的左子树,如果大于左子树所有节点,再以根节点的左结点为根节点检查是否满足二叉搜索树的性质。检查根节点是否小于所有的右子树,如果大于右子树上的所有节点,再以根节点的右节点为根节点检查是否满足二叉搜索树的性质。

Code AC

/*
 * @lc app=leetcode.cn id=98 lang=java
 *
 * [98] 验证二叉搜索树
 */

// @lc code=start
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public boolean isValidBST(TreeNode root) {

        boolean isValid = true;

        if (root.left != null) {
            isValid &= greaterThanAllLeftBST(root, root.left);
            isValid &= isValidBST(root.left);
        }

        if (root.right != null) {
            isValid &= lessThanAllRightBST(root, root.right);
            isValid &= isValidBST(root.right);
        }
        return isValid;
    }

    private boolean greaterThanAllLeftBST(TreeNode root, TreeNode node) {
        if (node.right != null) {
            return greaterThanAllLeftBST(root, node.right);
        } else {
            return root.val > node.val;
        }
    }

    private boolean lessThanAllRightBST(TreeNode root, TreeNode node) {
        if (node.left != null) {
            return lessThanAllRightBST(root, node.left);
        } else {
            return root.val < node.val;
        }
    }
}

Accepted

82/82 cases passed (0 ms)
Your runtime beats 100 % of java submissions
Your memory usage beats 25.86 % of java submissions (41.2 MB)

复杂度分析

  • 时间复杂度:
  • 空间复杂度:

官方题解 Code AC

class Solution {
    public boolean isValidBST(TreeNode root) {
        return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE);
    }

    public boolean isValidBST(TreeNode root, long min, long max) {
        if (root == null) return true;
        if (root.val <= min || root.val >= max) return false;
        return isValidBST(root.left, min, root.val) && isValidBST(root.right, root.val, max);
    }
}

Accepted

82/82 cases passed (0 ms)
Your runtime beats 100 % of java submissions
Your memory usage beats 60.12 % of java submissions (40.9 MB)

思路

  • 设计一个递归函数 helper(root, lower, upper) 来递归判断,函数表示考虑以 root 为根的子树,判断子树中所有节点的值是否都在 (l,r)(l,r)(l,r) 的范围内(注意是开区间)。如果 root 节点的值 val 不在 (l,r)(l,r)(l,r) 的范围内说明不满足条件直接返回,否则我们要继续递归调用检查它的左右子树是否满足,如果都满足才说明这是一棵二叉搜索树。
  • 那么根据二叉搜索树的性质,在递归调用左子树时,我们需要把上界 upper 改为 root.val,即调用 helper(root.left, lower, root.val),因为左子树里所有节点的值均小于它的根节点的值。同理递归调用右子树时,我们需要把下界 lower 改为 root.val,即调用 helper(root.right, root.val, upper)。
  • 函数递归调用的入口为 helper(root, -inf, +inf), inf 表示一个无穷大的值。

复杂度分析

  • 时间复杂度:O(n)。
  • 空间复杂度:O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值