近日在做基于sift特征点的图像配准时遇到匹配失败的情况,失败的原因在于两幅图像分辨率相差有点大,而且这两幅图是不同时间段的同一场景的图片,所以基于sift点的匹配已经找不到匹配点了。然后老师叫我尝试手动选择控制点来支持仿射变换。
很可惜opencv里没有这类似的库,查了下资料,看看有没有现成的手动配准软件,找到了arcgis这款软件可以做手动配准,不过这软件也都太大了吧我要的只是一个简单的功能而已!然后想了想,还是自己写个手动配准工具吧。
首先简单通俗说一下什么是图像配准。先观察一下下面两张图片。
这是两张从不同角度拍的场景,他们有大部分的重合,如果我们需要把这两张图拼接成一幅更大的图,我们需要做第一件事就是对他们进行配准,即对图二进行变换,令图二的物体转换到图一的坐标系,使得像素一一对应,这就是图像配准。
现在图像的配准方法有很多,比如基于特征点的配准,也有基于互信息的配准,都有广泛应用。现在我们使用特征点来配准,关键就在于找出两幅图像尽可能多对应的特征点,来求出变换矩阵,然后将待配准图进行变换。
现在实现一个简易的手动选择控制点的配准工具第一个版本,步骤有:
搭建交互界面,可以对两幅图自由选点,并把点坐标存储起来
求出变换矩阵
利用变换矩阵对待配准图进行仿射变换
根据以上思路,有以下代码
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include <iostream>
using namespace std;
using namespace cv;
vector<Point2f> imagePoints1, imagePoints2;
Mat ref_win, src_win;
int pcount = 0;
void on_mouse1(int event, int x, int y, int flags, void *ustc) //event鼠标事件代号,x,y鼠标坐标,flags拖拽和键盘操作的代号
{
if (event == CV_EVENT_LBUTTONDOWN)//左键按下,读取初始坐标,并在图像上该点处打点
{
Point p = Point(x, y);
circle(ref_win, p, 1, Scalar(0, 0, 255), -1);
imshow("基准图", ref_win);
imagePoints1.push_back(p); //将选中的点存起来
cout << "基准图: " << p << endl;
pcount++;
cout << "ponit num:" << pcount << endl;
}
}
void on_mouse2(int event, int x, int y, int flags, void *ustc) //event鼠标事件代号,x,y鼠标坐标,flags拖拽和键盘操作的代号
{
if (event == CV_EVENT_LBUTTONDOWN)//左键按下,读取初始坐标,并在图像上该点处打点
{
Point p = Point(x, y);
circle(src_win, p, 1, Scalar(0, 0, 255), -1);
imshow("待配准图", src_win);
imagePoints2.push_back(p); //将选中的点存起来
cout << "待配准图: " << p << endl;
}
}
int main()
{
Mat ref = imread("ref.png"); //基准图
Mat src = imread("src.png"); //待配准图
ref_win = ref.clone();
src_win = src.clone();
namedWindow("待配准图");
namedWindow("基准图");
imshow("待配准图", src_win);
imshow("基准图", ref_win);
setMouseCallback("待配准图", on_mouse2);
setMouseCallback("基准图", on_mouse1);
waitKey();
string str;
printf("往下执行?\n");
cin >> str;
//求变换矩阵
Mat homo = findHomography(imagePoints2, imagePoints1, CV_RANSAC);
Mat imageTransform1;
warpPerspective(src, imageTransform1, homo, Size(ref.cols, ref.rows)); //变换
imshow("transform", imageTransform1);
imshow("基准图打点", ref_win);
imshow("待配准图打点", src_win);
imshow("变换图", imageTransform1);
imwrite("result.jpg", imageTransform1);
imwrite("src_p.jpg", src_win);
imwrite("ref_p.jpg", ref_win);
waitKey();
return 0;
}
运行一下,弹出两幅图,一张是基准图,一张待配准图,我们仔细找出两者的匹配点,然后用鼠标左键点击该点,那么这个点的坐标信息就被记录下来了。注意匹配点的顺序必须一一对应,比如用鼠标在基准图点击了一个点,那么我们也必须在待配准图也点击对应的匹配点。
效果如下:
手动选择控制点(红点就是我们选中的点)
配准效果
再换个图试试吧
控制点选择
配准效果
这么一个简易手动配准工具1.0算是完成了。但是我们使用时遇到了新的问题,那就是需要两幅图的尺寸太大了,显示器根本没法显示完整个图像!有人会说,把图像缩小再配准不行吗?缩小再配准的话,精度就不能保证了,因为配准时像素级别的。要精确配准,就得用原图。
那就在原来代码的基础加点东西,来适应这种“浏览大图的效果”。但是其中需要改动的东西很多,所以1.0的代码几乎全改了。因为前辈的这种浏览大图的效果是拥塞的,只能在一幅图操作完之后才可以操作另一幅图,这个限制对于我们配准操作而言是无法接受的,所以我使用了多线程来操作这个窗口,使得我们可以随意在任何一张图片打点,随时切换。
下面是手动配准工具2.0版本的代码
main.cpp
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/opencv.hpp"
#include <Windows.h>
#include <iostream>
#include "NewWindows.h"
using namespace std;
using namespace cv;
void CreateWindows(char* s, char* pic);
void CreateWindows2(char* s, char* pic);
vector<Point2f> imagePoints1, imagePoints2; //记录匹配点
DWORD WINAPI ThreadFun1(LPVOID pM)
{
NewWindow ref_obj("基准", "ref.jpg");
ref_obj.CreateWindows();
imagePoints1 = ref_obj.imagePoints;
return 0;
}
DWORD WINAPI ThreadFun2(LPVOID pM)
{
NewWindow src_obj("待变换", "src.jpg");
src_obj.CreateWindows();
imagePoints2 = src_obj.imagePoints;
return 0;
}
int HandSlectPoint()
{
Mat tsrc1 = imread("ref.jpg"); //基准图
Mat tsrc2 = imread("src.jpg");
while (1)
{
#if 1
imagePoints1.clear();
imagePoints2.clear();
HANDLE handle1 = CreateThread(NULL, 0, ThreadFun1, NULL, 0, NULL); //创建线程
HANDLE handle2 = CreateThread(NULL, 0, ThreadFun2, NULL, 0, NULL);
printf("往下执行?\n");
//先拥塞住,点选完再进行计算变换矩阵
string s;
cin >> s;
Mat homo = findHomography(imagePoints2, imagePoints1, CV_RANSAC);
Mat imageTransform1;
warpPerspective(tsrc2, imageTransform1, homo, Size(tsrc1.cols, tsrc1.rows));
imwrite("trans.jpg", imageTransform1); //把配准后结果存起来
CloseHandle(handle1);//销毁线程1
CloseHandle(handle2);//销毁线程1
#endif
printf("是否结束?\n");
//判断是否结束,如果点选得不好,就再来一次
string str;
cin >> str;
if (str == "yes")
break;
}
return 0;
}
int main()
{
HandSlectPoint();
return 0;
}
NewWindows.cpp
#include "NewWindows.h"
NewWindow::NewWindow(char* label, char* pic_name)
{
this->pic_name = pic_name;
this->label = label;
}
void NewWindow::mouse_callback(int event, int x, int y, int flags, void* param)
{
p = Point(x, y);
pp = Point(x + x_offset, y + y_offset);
if (needScroll)
{
switch (event)
{
case CV_EVENT_RBUTTONDOWN:
mx = x, my = y;
dx = 0, dy = 0;
// 按下左键时光标定位在水平滚动条区域内
if (x >= rect_bar_horiz.x && x <= rect_bar_horiz.x + rect_bar_horiz.width
&& y >= rect_bar_horiz.y && y <= rect_bar_horiz.y + rect_bar_horiz.height)
{
clickHorizBar = true;
}
// 按下左键时光标定位在垂直滚动条区域内
if (x >= rect_bar_verti.x && x <= rect_bar_verti.x + rect_bar_verti.width
&& y >= rect_bar_verti.y && y <= rect_bar_verti.y + rect_bar_verti.height)
{
clickVertiBar = true;
}
break;
case CV_EVENT_MOUSEMOVE:
if (clickHorizBar)
{
dx = fabs(x - mx) > 1 ? (int)(x - mx) : 0;
dy = 0;
}
if (clickVertiBar)
{
dx = 0;
dy = fabs(y - my) > 1 ? (int)(y - my) : 0;
}
mx = x, my = y;
break;
case CV_EVENT_RBUTTONUP:
mx = x, my = y;
dx = 0, dy = 0;
clickHorizBar = false;
clickVertiBar = false;
break;
case CV_EVENT_LBUTTONDOWN:
//cvShowImage("jizuhn",dst_img);
imagePoints.push_back(pp);
cout << label <<": "<< pp << endl;
//_p1count++;
//cout << "zhihuan count:" << _p1count << endl;
flag = 1;
//dx = 0, dy = 0;
break;
default:
dx = 0, dy = 0;
break;
}
}
}
void NewWindow::myShowImageScroll(char* title, IplImage* src_img, int winWidth, int winHeight ) // 显示窗口大小默认为 1400×700
{
CvRect rect_dst, // 窗口中有效的图像显示区域
rect_src; // 窗口图像对应于源图像中的区域
int imgWidth = src_img->width,
imgHeight = src_img->height,
barWidth = 25; // 滚动条的宽度(像素)
double scale_w = (double)imgWidth / (double)winWidth, // 源图像与窗口的宽度比值
scale_h = (double)imgHeight / (double)winHeight; // 源图像与窗口的高度比值
if (scale_w<1)
winWidth = imgWidth + barWidth;
if (scale_h<1)
winHeight = imgHeight + barWidth;
int showWidth = winWidth, showHeight = winHeight; // rect_dst 的宽和高
int src_x = 0, src_y = 0; // 源图像中 rect_src 的左上角位置
int horizBar_width = 0, horizBar_height = 0,
vertiBar_width = 0, vertiBar_height = 0;
needScroll = scale_w>1.0 || scale_h>1.0 ? TRUE : FALSE;
// 若图像大于设定的窗口大小,则显示滚动条
if (needScroll)
{
IplImage* dst_img = cvCreateImage(cvSize(winWidth, winHeight), src_img->depth, src_img->nChannels);
cvZero(dst_img);
// 源图像宽度大于窗口宽度,则显示水平滚动条
if (1)
{
showHeight = winHeight - barWidth;
horizBar_width = (int)((double)winWidth / scale_w);
horizBar_height = winHeight - showHeight;
horizBar_x = min(
max(0, horizBar_x + dx),
winWidth - horizBar_width);
rect_bar_horiz = cvRect(
horizBar_x,
showHeight + 1,
horizBar_width,
horizBar_height);
// 显示水平滚动条
cvRectangleR(dst_img, rect_bar_horiz, cvScalarAll(255), -1);
}
// 源图像高度大于窗口高度,则显示垂直滚动条
if (scale_h > 1.0)
{
// printf("come!\n");
showWidth = winWidth - barWidth;
vertiBar_width = winWidth - showWidth;
vertiBar_height = (int)((double)winHeight / scale_h);
vertiBar_y = min(
max(0, vertiBar_y + dy),
winHeight - vertiBar_height);
//printf("vertiBar_width:%d vertiBar_height:%d\n", vertiBar_width, vertiBar_height);
//printf("x:%d y:%d\n", showWidth + 1, vertiBar_y);
rect_bar_verti = cvRect(
showWidth + 1,
vertiBar_y,
vertiBar_width,
vertiBar_height);
// 显示垂直滚动条
//printf("w:%d h:%d\n", dst_img->width, dst_img->height);
cvRectangleR(dst_img, rect_bar_verti, cvScalarAll(255), -1);
}
showWidth = min(showWidth, imgWidth);
showHeight = min(showHeight, imgHeight);
// 设置窗口显示区的 ROI
rect_dst = cvRect(0, 0, showWidth, showHeight);
cvSetImageROI(dst_img, rect_dst);
// 设置源图像的 ROI
src_x = (int)((double)horizBar_x*scale_w);
src_y = (int)((double)vertiBar_y*scale_h);
src_x = min(src_x, imgWidth - showWidth);
src_y = min(src_y, imgHeight - showHeight);
rect_src = cvRect(src_x, src_y, showWidth, showHeight);
x_offset = src_x;
y_offset = src_y;
cvSetImageROI(src_img, rect_src);
if (flag == 1)
{
cvCircle(src_img, p, 3, Scalar(0, 0, 255), -1);
flag = 0;
}
// 将源图像内容复制到窗口显示区
cvCopy(src_img, dst_img);
cvResetImageROI(dst_img);
cvResetImageROI(src_img);
// 显示图像和滚动条
cvShowImage(title, dst_img);
cvReleaseImage(&dst_img);
}
// 源图像小于设定窗口,则直接显示图像,无滚动条
else
{
cvShowImage(title, src_img);
}
}
void m_callback(int event, int x, int y, int flags, void* param)
{
NewWindow* p_win = (NewWindow*)param;
p_win->mouse_callback(event, x, y, flags, NULL);
}
void NewWindow::CreateWindows()
{
int width = 1200, height = 700; //显示的图片大小
cvNamedWindow(label, 1);
cvSetMouseCallback(label, m_callback, this);
image = cvLoadImage(pic_name, CV_LOAD_IMAGE_COLOR);
while (1)
{
myShowImageScroll(label, image, width, height);
//Sleep(100);
int KEY = cvWaitKey(10);
if ((char)KEY == 27)
break;
}
cvDestroyWindow(label);
}
NewWindows.h
#ifndef __NEW_WINDOWS_H__
#define __NEW_WINDOWS_H__
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc_c.h>
#include <Windows.h>
#include <iostream>
#include <vector>
#define FALSE 0
#define TRUE 1
using namespace std;
using namespace cv;
class NewWindow
{
public:
vector<Point2f> imagePoints;
void CreateWindows();
void mouse_callback(int event, int x, int y, int flags, void* param);
NewWindow(char* label, char* pic_name);
private:
double mx = 0, my = 0;
int dx = 0, dy = 0, horizBar_x = 0, vertiBar_y = 0;
bool clickVertiBar = false, clickHorizBar = false, needScroll = false;
CvRect rect_bar_horiz, rect_bar_verti;
IplImage* image;
Point p;
Point pp;
int flag = 0;
int x_offset;
int y_offset;
char* pic_name;
char* label;
void myShowImageScroll(char* title, IplImage* src_img,
int winWidth = 1400, int winHeight = 700); // 显示窗口大小默认为 1400×700
};
#endif
看看效果吧,现在我们需要对两张2000*2000的图像进行配准,因为我们的显示器无法完全显示整张图片,所以使用了这个带浏览大图的工具来进行配准。可以看到,显示图的右侧和下侧都有滚动条,我们只需按住鼠标右键拖动即可浏览到显示不到的区域,同样地,我们是点击鼠标左键实现选点。
点的坐标一一记录
配准之后,可以看出图像发生了轻微形变,与基准图一对比,发现配准成功。