核心:卷积计算的参数(卷积核)、计算次数(等于输出值个数)、计算方法(卷积算法)
一、示例
输入图片:227 * 227 * 3
这个图像被96个大小规格为11 * 11 * 3(同样也是三通道了)的卷积核,进行特征提取。
1、针对一个卷积核:
【1】一个卷积核有多少个参数?
即卷积核的大小再加偏置(11乘11乘3+1),注意一个卷积核的所有神经元共享该组参数
备注:一个卷积核提取一个特征,包含一套参数、一个偏置
【2】图像经过一个卷积核卷积后输出值个数?
- 一个感受野(11乘11乘3)即卷积核的大小;
- 神经元模型即神经网络模型,可以理解为一个滤波器,包含一个卷积核(一组固定权重、一个偏置)、一个激活函数,经过一个卷积核卷积后输出的像素个数即经过该卷积核后生成的特征图的大小(55乘55)
【3】图像经过一个卷积层(多个卷积核叠加便形成卷积层)的输出值个数:(55*55)96
【4】区分神经元模型和神经元:
神经元模型:一个神经元模型(一套卷积核参数+一个激活函数)提取一个特征。一个卷积核对应一个神经元模型。
神经元:一个神经元是一个计算单元(节点),一次计算提取过程的计算次数即神经元个数,也等于输出值个数
权值共享:神经元共享一套卷积核参数
【5】连接数=参数特征图大小
和全链接相比,卷积计算方式,计算量大幅下降:
1)计算次数(神经元个数、特征图大小)减少
2)单次计算的参数减少(全链接参数量级:原图像大小;卷积参数量级:变为卷积核大小/感受野)
C1层(卷积层):是一个卷积层,由6个特征图Feature Map构成。特征图中每个神经元与5*5的邻域(滤波器)相连。
- 特征图大小:特征图的大小28*28,这样能防止输入的连接掉到边界之外(32-5+1=28)。
feature map边长大小的具体计算参见:http://blog.csdn.net/qq_15192373/article/details/78393520
-
参数个数:C1有156个可训练参数 (每个滤波器55=25个unit参数和一个bias参数,一共6个滤波器,共(55+1)*6=156个参数)
-
链接个数/FLOPS个数::(5*5+1)6 (2828)=122,304个。左边是滤波器在输入层滑过的神经元个数,右边是C1层每个feature map的神经元个数,左右对应关系是1对2828,相乘即为连接数。(每个链接对应1次计算,由wa+b可知,每个参数参与1次计算,所以1个单位的偏置b也算进去)
S2层(下采样层):是一个下采样层,有6个1414的特征图。特征图中的每个单元与C1中相对应特征图的22邻域相连接。
-
特征图大小:每个单元的2*2感受野并不重叠,因此S2中每个特征图的大小是C1中特征图大小的1/4(行和列各1/2)
-
参数个数:S2层有 12个 (6*(1+1)=12) 可训练参数。S2层 每个滤波器路过的4个邻域 的4个输入相加,乘以1个可训练参数w,再加上1个可训练偏置b(即一个滤波器对应两个参数)。(对于子采样层,每一个特征映射图的的可变参数需要考虑你使用的采样方式而定,如文中的采样方式,每一个特征映射图的可变参数数量为2个,有的采样方式不需要参数)
-
链接个数/FLOPS个数:5880个连接,( (2*2+1)*6 1414=5880) 。左边是滤波器在C1层滑过的神经元个数,右边是S2层每个feature map的神经元个数,相乘即为连接数。
C3层(卷积层):是一个卷积层,它同样通过5x5的卷积核去卷积层S2,然后得到的特征map就只有10x10个神经元,但是它有16种不同的卷积核,所以就存在16个特征map了。
- 特征图大小:C3中每个特征图由S2中所有6个或者几个特征map组合(几个滤波器计算的神经元的值 相加 合并成一个神经元)而成。
为什么不把S2中的每个特征图连接到每个C3的特征图呢?原因有2点。
第1,不完全的连接机制将连接的数量保持在合理的范围内。
第2,也是最重要的,其破坏了网络的对称性。由于不同的特征图有不同的输入,所以迫使他们抽取不同的特征(希望是互补的)。(14-5+1=10)
- 参数个数:例如,存在的一个方式是:
C3的前6个特征图:相当于需要6组滤波器,每组以S2中 3个相邻 特征图子集 为输入,共享一个偏置。(C3每个特征图 由 S2中3个特征图分别用不同滤波器 再加和得到)
C3的接下来6个特征图:相当于需要6组滤波器,每组以S2中 4个相邻 特征图子集 为输入,共享一个偏置。(1对4)
C3的接下来3个特征图:相当于需要3组滤波器,每组以S2中 4个不相邻 特征图子集 为输入,共享一个偏置。(1对4)
C3的最后1个特征图:相当于需要1组滤波器,每组将S2中所有 特征图 为输入,共享一个偏置。(1对6)
这样C3层有1516个可训练参数。计算:6*(3*25+1)+6*(4*25+1)+3*(4*25+1)+(25*6+1)=1516。此处,C3个特征图由 S2中n个卷积结果合并,然后共享1个b,组合计算得到。
- 链接个数/FLOPS个数:1516* 10*10=151600个连接。左边是滤波器滑过的S2层神经元个数,右边是C3层特征图大小。
S4层(下采样层):是一个下采样层,由16个55大小的特征图构成。特征图中的每个单元与C3中相应特征图的22邻域相连接,跟C1和S2之间的连接一样。
-
特征图大小:55大小。每个单元的22感受野并不重叠,因此S2中每个特征图的大小是C1中特征图大小的1/4(行和列各1/2)
-
参数个数:S4层有32个可训练参数。(每个特征图1个因子w和1个偏置b,16*(1+1)=32)
-
链接个数/FLOPS个数:16* (2*2+1) 55=2000个连接。左边是滤波器在C3层滑过的神经元个数,右边是S4层神经元个数,相乘即为连接数。
C5层(卷积层或第一个全连接层):是一个卷积层,有120个特征图(或者说神经元)。每个单元与S4层的全部16个单元的5*5邻域(与S4层特征图一样大)相连。(120组滤波器, 每组16个滤波器,分别与 S4层16个特征图 进行卷积, 每组得到C5层的一个神经元/特征图)
-
特征图大小:由于S4层特征图的大小也为55(同滤波器一样),故C5特征图的大小为11。(5-5+1=1), 这构成了S4和C5之间的全连接。之所以仍将C5标示为卷积层而非全相联层,是因为如果LeNet-5的输入变大,而其他的保持不变,那么此时特征图的维数就会比1*1大。
-
参数个数:120* (1655+1)=48120个。滤波器个数12016个,所以w有1201655个,同组16个滤波器共用一个b,所以有120个b。
-
链接个数/FLOPS个数:4812011, 左边是滤波器滑过的神经元个数,右边是C5层特征图大小(其实现在已经变成了单个神经元,大小1*1),相乘即为连接数,此处也即FLOPS个数。
F6层(全连接层):虽然是全连接层,得到F6层每个神经元 由 每组120个1*1的滤波器对C5层卷积,一共84组滤波器,得到84个神经元。
-
特征图大小:有84个单元(之所以选这个数字的原因来自于输出层的设计),与C5层全相连。
-
参数个数:有 84* (120*(11)+1)=10164 个可训练参数。如同经典神经网络,F6层计算输入向量(120)和权重向量(11)之间的点积,再加上一个偏置(+1)。然后将其传递给sigmoid函数产生单元i的一个状态。
-
链接个数/FLOPS个数:10164* 1*1,左边是滤波器在C5层滑过的神经元个数,右边是F6层特征图大小。1个链接对应1次计算。
输出层:由欧式径向基函数(Euclidean Radial Basis Function)单元组成,每类一个单元,每个有84个输入。
相关参考:https://blog.csdn.net/AI_dataloads/article/details/133250229