Fighting Opinion Control in Social Networks via Link Recommendation
这篇文章的工作就是致力于设计一种链路推荐算法,它允许在线社交网络平台禁用试图控制网络中意见分配的效果。
文章贡献:
- 定义了一个新的np难题(DIVER),即通过边缘推荐来消除社交网络中的外部影响。
- 提供了新的扰动分析,建立了在加入一条边时网络的特征中心向量如何变化。分析导致边缘分数fπ(i, j)的定义 ,边缘分数是量化在DIVER目标下的网络中有向边(i,j)增加的潜在影响。
- 展示了如何在具有倾斜特征向量中心性分布的网络中估计伪常数时间的边缘分数fπ,比如无标度网络
- 为DIVER提供伪线性时间启发式依赖边缘分数fπ,并且研究其在合成和真实网络的有效性和效率。
链路推荐简例
首先对下图的名词进行一下解释
符号 | 含义 |
---|---|
W | 网络的行随机矩阵 |
x ( x ~ \widetilde{x} x ) | 用户意见(用户被影响后的意见) |
π \pi π ( π ~ \widetilde{\pi} π ) | 用户意见特征向量(增加链路后用户意见特征向量) |
⟨ π ⃗ \vec{\pi} π , x ⃗ \vec{x} x ⟩ | ⟨ π ⃗ \vec{\pi} π , x ⃗ \vec{x} x ⟩ = π ⃗ \vec{\pi} π T x ⃗ \vec{x} x |