Learning Dynamic Context Graphs for Predicting Social Events阅读笔记

本文介绍了如何使用动态图卷积网络(Dynamic GCN)模型预测社交事件,通过图神经网络捕捉事件之间的时空依赖。模型通过PMI计算边权重,构建事件的动态图,并结合时间编码模块,提升预测准确性。实验在印度、埃及、泰国和俄罗斯的抗议活动数据集上进行。
摘要由CSDN通过智能技术生成

利用事件上下文进行事件预测的挑战

  1. 数据规模飞速增长使得传统特征工程的模型结果准确性降低
  2. 现有的事件预测模型通常考虑给定时间段内特征的顶点或总和,忽略了不同事件之间的时间依赖关系对未来事件的影响
  3. 事件的描述信息不全面

创新

  • 基于图神经网络,使用图表示事件上下文;(对应挑战3)
  • 使用随时间变化的动态图网络分析事件上下文;(对应挑战2)
  • 构建时间编码的特征模块,同时考虑语义嵌入和隐藏层图嵌入(对应挑战1)

流程

大体流程:将文本转换为图表示,再使用图神经网络模型学习,得到结果y
在这里插入图片描述
具体流程
输入数据由按时间顺序排列的与事件相关的文本信息组成。
根据输入的数据构造动态图,并按时间将其输入到GCN层中。
输入特征由时态编码(TE)模块处理
最后一个GCN层的输出和当前字的嵌入,以捕获时态特征
计算模型输出 y ^ \widehat{y} y 和标注的真实值 y y y之间的损失
在这里插入图片描述

编码

符号说明:

  • t:表示时间步
  • n:选取每篇文章内n个关键词
  • k:表示当前事件信息前k天的信息
  • [ A t − k , . . . , A t − 1 ] [A_{t-k},...,A_{t-1}] [Atk,...,At1]:词关系图的邻接矩阵序列表示(A为n×n维)

使用PMI(point-wise mutual information)来衡量两个词之间的关联度
在这里插入图片描述
其中 d ( i , j ) d(i,j) d(i,j)代表 t t t时刻文本中同属出现i和j的文本总数, d ( i ) 和 d ( j ) d(i)和d(j) d(i)d(j)分别表示出现i和j的文本总数,D是集合中所有文本的总数。

定义结点i和结点j在时刻t处的边权为:
在这里插入图片描述
PMI值越大说明语义相似度越高,此处只为PMI为正的词对之间添加边权。

动态图卷积网络模型

输入层

由输入数据进行编码, [ A t − k , . . . , A t − 1 ] [A_{t-k},...,A_{t-1}] [Atk,...,At1]的边权值由PMI计算获得。

图卷积层
静态GCN

对于无向图 G ( V , E ) G(V,E) G(V,E),H为包含所有n个结点的特征矩阵(n×F维,F为特征向量维数)。对于给定的邻接矩阵A经过GCN层的映射,由 H H H H ( 1 ) H^{(1)} H(1)可以表示为
H ( 1 ) = g ( A ^ H W ( 0 ) + b ( 0 ) ) H^{(1)}=g(\widehat{A}HW^{(0)}+b^{(0)}) H(1)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值