detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("./shape_predictor_68_face_landmarks.dat")
cap = cv2.VideoCapture("smoke.avi")
ret, image = cap.read()
idxx=1
while ret:
print("id",idxx)
# sta = time.time()
ret, image = cap.read()
# image = cv2.resize(image, (640,384))
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1)
# enumerate()方法用于将一个可遍历的数据对象(列表、元组、字典)组合
# 为一个索引序列,同时列出 数据下标 和 数据 ,一般用在for循环中
check_smoke=False
if rects is None:
continue
for (i, rect) in enumerate(rects):
shape = predictor(gray, rect) # 标记人脸中的68个landmark点
shape = face_utils.shape_to_np(shape) # shape转换成68个坐标点矩阵
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["mouth"]
(x_face, y_face, w_face, h_face) = face_utils.rect_to_bb(rect) # 返回人脸框的左上角坐标和矩形框的尺寸
# cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
# cv2.putText(image, "Face #{}".format(i + 1), (x - 10, y - 10),
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# landmarksNum = 0;
m_49 = None
m_55 =
基于dlib的抽烟检测
最新推荐文章于 2023-12-02 10:06:48 发布
本文详细介绍了如何利用dlib库进行抽烟行为的检测。首先,通过面部关键点检测定位嘴部,然后结合特定的姿势特征来识别是否在抽烟。内容涵盖了dlib的面部检测算法、关键点定位及行为分析的步骤,为实现行为识别提供了一个实用的解决方案。
摘要由CSDN通过智能技术生成