Windows下设置Pycharm在anaconda的编译环境

本文介绍如何在Windows系统下的PyCharm中配置Anaconda环境,以便使用Anaconda管理的Python包。主要步骤包括:打开PyCharm并进入设置界面,添加本地编译环境,选择Anaconda对应的Python解释器。
部署运行你感兴趣的模型镜像

Pycharm是一个非常好用的Python编译运行IDE,anaconda则用于管理Python中各种各样的包。下面讲讲在Windows系统下让Pycharm能够使用anaconda管理的各种包。
1 找到编译器选项
首先打开Pycharm然后点击File->settings,然后就可以看到下图所示界面:
这里写图片描述
2 选择编译环境
然后点击添加本地编译环境:
这里写图片描述
接着选择环境,并浏览文件,注意是在Conda下:
这里写图片描述
最后根据anaconda的安装路径找到Python编译环境,本次演示中Python的环境位于D:\Install\ANACONDA路径下,请注意,此时选择环境时,一定要选择你安装anaconda时的那个路径,不然anaconda管理的各种包是不能使用的。
这里写图片描述
注意:选择以Python开头的文件时,Pycharm可能没识别好,所以是带有问号的图标:
这里写图片描述

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

### 如何在 Anaconda 中设 PyCharm 编译环境 #### 创建 Conda 虚拟环境 为了确保项目的独立性和依赖管理,在创建项目之前先通过命令行工具 `Anaconda Prompt` 或者终端来创建一个新的虚拟环境: ```bash conda create --name myenv python=3.9 ``` 激活新创建的环境以便后续安装所需的包。 ```bash conda activate myenv ``` 这一步骤可以避免不同项目之间的冲突并简化依赖关系管理[^2]。 #### 安装必要的软件包 一旦进入新的环境中,可以根据需求安装特定版本的数据科学库或其他任何必需品。例如: ```bash conda install numpy pandas matplotlib seaborn jupyter notebook scipy scikit-learn ``` 这些指令会自动处理所有相关的依赖项,从而减少了手动调整的风险和复杂度。 #### 在 PyCharm 中配解释器路径 打开 PyCharm 并前往 **File -> Settings (Ctrl+Alt+S)** 对于 Windows/Linux 用户;对于 macOS 用户则是 **PyCharm -> Preferences** 。导航到 **Project: your_project_name -> Python Interpreter** ,点击右上角齿轮图标旁边的下拉菜单选择 "Add..." 选项。此时会出现多个选项卡,从中挑选 **Conda Environment** 下面的 **Existing environment** 来指定现有的 conda 环境作为目标解释器。点击右侧省略号按钮浏览至 Anaconda 安装位中的 `python.exe` 文件完成关联过程[^1]。 #### 测试配有效性 最后一步是在 IDE 内部运行简单的测试脚本来验证一切正常工作。尝试导入先前已安装过的几个模块,并执行一些基本功能调用来确认它们能够被正确识别且无误地加载进来。 ```python import numpy as np print(np.__version__) ``` 如果上述代码片段成功打印出了 NumPy 版本,则说明整个流程顺利完成!
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值