题目描述:
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens’ placement, where ‘Q’ and ‘.’ both indicate a queen and an empty space respectively.
Example:
Input: 4
Output: [
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
题源:here;完整实现:here
思路:
N皇后问题属于经典的回溯问题,就是不断地尝试可能的解。这个很像第37题-解数独问题。在程序中,我们使用一个二维矩阵validPos
来记录可以放置皇后的位置并不断地更新它,代码实现如下:
class Solution {
public:
void recurse(vector<string> solution, int pos, vector<vector<bool>> validPos, vector<vector<string>>& result){
int n = solution[0].size();
if (pos == n){
result.push_back(solution); return;
}
for (int i = 0; i < n; i++){
if (!validPos[pos][i]) continue;
vector<vector<bool>> newPos = validPos;
for (int j = pos; j < n; j++){
newPos[j][i] = false;
if (i - j + pos >= 0) newPos[j][i - j + pos] = false;
if (i + j - pos < n) newPos[j][i + j - pos] = false;
}
solution[pos][i] = 'Q';
recurse(solution, pos + 1, newPos, result);
solution[pos][i] = '.';
}
return;
}
vector<vector<string>> solveNQueens(int n) {
vector<vector<string>> result;
vector<string> solution(n, string(n, '.'));
vector<vector<bool>> validPos = vector<vector<bool>>(n, vector<bool>(n, true));
recurse(solution, 0, validPos, result);
return result;
}
};