LeetCode51 N-Queens N皇后问题

题目描述:
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

这里写图片描述

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens’ placement, where ‘Q’ and ‘.’ both indicate a queen and an empty space respectively.

Example:

Input: 4
Output: [
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]

Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.
题源:here;完整实现:here
思路:
N皇后问题属于经典的回溯问题,就是不断地尝试可能的解。这个很像第37题-解数独问题。在程序中,我们使用一个二维矩阵validPos来记录可以放置皇后的位置并不断地更新它,代码实现如下:

class Solution {
public:
    void recurse(vector<string> solution, int pos, vector<vector<bool>> validPos, vector<vector<string>>& result){
        int n = solution[0].size();
        if (pos == n){
            result.push_back(solution); return;
        }

        for (int i = 0; i < n; i++){
            if (!validPos[pos][i]) continue;

            vector<vector<bool>> newPos = validPos;
            for (int j = pos; j < n; j++){
                newPos[j][i] = false;
                if (i - j + pos >= 0) newPos[j][i - j + pos] = false;
                if (i + j - pos < n) newPos[j][i + j - pos] = false;
            }
            solution[pos][i] = 'Q';

            recurse(solution, pos + 1, newPos, result);
            solution[pos][i] = '.';
        }

        return;
    }

    vector<vector<string>> solveNQueens(int n) {
        vector<vector<string>> result;
        vector<string> solution(n, string(n, '.'));
        vector<vector<bool>> validPos = vector<vector<bool>>(n, vector<bool>(n, true));

        recurse(solution, 0, validPos, result);

        return result;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值