A peak element is an element that is greater than its neighbors.
Given an input array nums
, where nums[i] ≠ nums[i+1]
, find a peak element and return its index.
The array may contain multiple peaks, in that case return the index to any one of the peaks is fine.
You may imagine that nums[-1] = nums[n] = -∞
.
Example 1:
Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [
1,2,1,3,5,6,4]
Output: 1 or 5
Explanation: Your function can return either index number 1 where the peak element is 2,
or index number 5 where the peak element is 6.
Note:
Your solution should be in logarithmic complexity.
思路:
1 暴力求解。通过遍历的方式找出peak值;2 二分求解,这个方法之所以能行,有个很大的前提是nums[0]和nums[nums.size()]的值默认是无穷小,因此,只要我们发现某个升序(nums[i]<nums[i+1]),那么i后面必然有个峰值;反之则i前面必然有个峰值。
解法1
int findPeakElement(vector<int>& nums) {
if (nums.size() == 1) return 0;
if (nums[0] > nums[1]) return 0;
if (nums[nums.size() - 2] < nums[nums.size()-1]) return nums.size() - 1;
for (decltype(nums.size()) i = 1; i < nums.size() - 1; i++) {
if (nums[i] > nums[i + 1] && nums[i] > nums[i - 1]) return i;
}
return -1;
}
解法2
int findPeakElement2(vector<int>& nums) {
decltype(nums.size()) head = 0, tail = nums.size() - 1, mid;
while (head < tail) {
mid = (head + tail) / 2;
if (nums[mid] < nums[mid + 1]) head = mid+1;
else tail = mid;
}
return head;
}