spark 优化

本文深入探讨了Spark的性能优化,重点在JOIN操作的优化,包括原理和改造代码。还讨论了cache的使用,如不同级别的缓存、kryo序列化的影响。此外,提到了其他关键配置如`spark.reducer.maxSizeInFlight`和`spark.shuffle.file.buffer`。在Spark Streaming部分,介绍了如何计算每秒拉取的数据量、背压机制、分区调整和内存泄漏的分析方法,帮助提升系统效率。
摘要由CSDN通过智能技术生成

在这里插入图片描述

背景代码
System.setProperty("HADOOP_USER_NAME", "root")
System.setProperty("hadoop.home.dir", "C:\\winutils")
val conf: SparkConf = new SparkConf().setAppName("dws_member_import").setMaster("local[4]")
val sparkSession: SparkSession = SparkSession.builder().config("dfs.client.use.datanode.hostname", "true").config(conf).enableHiveSupport().getOrCreate()
val ssc: SparkContext = sparkSession.sparkContext
ssc.hadoopConfiguration.set("fs.defaultFS", "hdfs://mycluster")
ssc.hadoopConfiguration.set("dfs.nameservices"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IDONTCARE8

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值