线性代数
文章平均质量分 58
satadriver
唯有强大才能救赎。
生而有翼,为何你竟愿一生匍匐前进,形如虫蚁?
当家作主, 不屈从于控制, 不证明自己。
展开
-
线性相关小例子
主要是考察对向量线性相关的理解。原创 2024-03-01 10:53:01 · 423 阅读 · 0 评论 -
高斯削元法
例子:证明1aa2a41bb2b41cc2c41dd2d4a−ba−ca−db−cb−dc−dabcd证明:1aa2a41bb2b41cc2c41dd2d410001b−ab2−abb4−b2a21c−ac2−acc4−c2a21d。原创 2023-12-15 14:00:55 · 423 阅读 · 0 评论 -
矩阵求导之二
例3: 求d (detA)原创 2023-10-17 14:06:35 · 123 阅读 · 0 评论 -
机器学习极值问题
注意到,上式(1.1)中是一个二次型,其中第一项和第二项是一样的。原创 2023-10-09 09:40:16 · 416 阅读 · 0 评论 -
线性代数小例子
因此,对上述等式条件的利用,就只能使用上图中的方式来推导。但是上述两个矩阵都不是0矩阵。原创 2023-10-08 13:23:09 · 1097 阅读 · 0 评论 -
矩阵的范数
原创 2023-10-08 13:21:15 · 66 阅读 · 0 评论 -
转置矩阵的性质
究其原因,矩阵和转置矩阵的i行和j列的内积,满足对称矩阵的条件。矩阵乘以它的转置矩阵为对称矩阵。原创 2023-10-08 13:16:47 · 305 阅读 · 0 评论 -
矩阵求导数
根据导数定义和性质,极值处导数为0。首先求出矩阵的导数,置为0后求解。一般是列向量,需要放在后面,此时需要将矩阵导数放在前面,并转置。注意:上式中每一项都是一个标量,而不是向量。原创 2023-09-30 23:42:18 · 1139 阅读 · 0 评论 -
投影矩阵公式推导
yx = |yx| * x / |x| = / |x| *x / |x| ,即可得到下图中的矩阵。原创 2023-07-12 12:21:15 · 444 阅读 · 0 评论 -
对称矩阵的对角化
对称矩阵必然可以可转化为对角矩阵的证明原创 2023-07-06 12:01:31 · 134 阅读 · 0 评论 -
合同矩阵充要条件
从(1.2)和(1.4)可以得出,A和B有相同的特征值(规范型),结论得证。既可以是普通的对角矩阵,也可以是规范型(即对角元素的值的绝对值为1)。正惯性指数是矩阵正特征值个数,负惯性指数是矩阵负特征值个数。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。即合同矩阵的充分必要条件是特征值的正负号个数相同。本论证中的所有矩阵都是对称矩阵。根据定义,若矩阵A和矩阵B满足。,则(1.3)可化为。原创 2023-09-10 23:08:37 · 12091 阅读 · 2 评论 -
施密特(Gram-Schmidt)正交化
我在这里曾将犯过一个错误,不明白乘以a1/|a1|的含义,直觉不自然的乘以a2/|a1|,结果得到错误的值,以此为戒。如果没有空间向量解析几何基础,理解起来稍微有些困难,因此稍微解说一下。原创 2023-07-12 10:23:23 · 3335 阅读 · 0 评论 -
拉普拉斯矩阵
原创 2023-08-19 18:44:21 · 71 阅读 · 0 评论 -
线性代数的一些小细节
合同:就是两个矩阵有相同的正负惯性指数。在实数域上,只要两个矩阵的正负惯性指数相同,即可以认为两个矩阵存在合同。这是非常重要的判别的一句话!对称矩阵A(也可以不是对称矩阵)求对角阵或特征值。正的特征值的个数就是正惯性指数,负的特征值个数就是负惯性指数。下图中,AB 和BA的值可能是不同的(相同的条件是图中相互对应的4项相同,即对称矩阵)如下,UWQ三个矩阵的2种结合,证明矩阵乘法满足结合律。1 .矩阵的满足结合律,但不满足交换律。原创 2023-07-13 22:40:37 · 1568 阅读 · 0 评论 -
矩阵svd分解和矩阵的伪逆
直接看数学博士写的ppt图,肯定写的比我好:下面这这方式也可以:原创 2023-07-24 00:50:05 · 577 阅读 · 0 评论