概率论和数理统计
文章平均质量分 56
satadriver
唯有强大才能救赎。
生而有翼,为何你竟愿一生匍匐前进,形如虫蚁?
当家作主, 不屈从于控制, 不证明自己。
展开
-
matlab概率论例子
【代码】matlab概率论例子。原创 2024-01-01 16:59:02 · 714 阅读 · 0 评论 -
马尔可夫随机过程基础点
马尔可夫转移矩阵是按照行排列的。马尔科夫链的极限分布。原创 2023-12-24 20:28:59 · 1100 阅读 · 0 评论 -
bootstrap基础
bootstrap方法用于样本数较少时的数学统计和参数估计。其数学原理基于格里汶科定理。以下知识来自于浙江大学版的《概率论与数理统计》一书第10章"Bootstrap方法"。与总体分布函数F(x)只有微小的差别,在实际上可以当多F(x)来使用。bootstrap由美国数学家Efron于20世界70年代创建。对于任意实数x当n充分大时,经验分布函数的任一观察值。原创 2023-12-21 23:53:20 · 1351 阅读 · 0 评论 -
正态分布核函数
正太分布概率密度推导:设I∫−∞∞2π1e−2x2dx则:I2∫−∞∞2π1e−2x2dx∫−∞∞2π1e−2y2dyI2∫−∞∞2π1e−2x2dx∫−∞∞2π1e−2y2dy∫−∞∞∫−∞∞2π1e−2y2x2dxdy。原创 2023-09-29 14:34:58 · 174 阅读 · 0 评论 -
卡方分布的期望值和方差
若n个相互独立的随机变量ξ₁,ξ₂,…,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。的方差是3n-n = 2n。原创 2023-09-29 14:00:52 · 5237 阅读 · 4 评论 -
概率论几种易混淆的形式
σx−μPX≤nσ2∑i1nxi−nμ∫−∞X2π1e−2x2dx即:PX≤nσxˉ−μ∫−∞X2π1e−2x2dxχ2σ2n−1S2∼χ2n−1)sxˉ−μ∼t2n−1。原创 2023-09-24 16:23:51 · 172 阅读 · 0 评论 -
【泊松定理】
核心知识如下图:原创 2023-07-03 10:06:02 · 2123 阅读 · 0 评论 -
复合函数的概率密度
复合函数的概率密度原创 2023-02-22 11:19:37 · 787 阅读 · 0 评论 -
卷积公式以及变量代换
所谓卷积公式原创 2023-02-22 11:50:53 · 123 阅读 · 0 评论 -
F分布概率密度
F分布概率密度原创 2023-02-22 12:04:00 · 66 阅读 · 0 评论 -
T分布的概率密度
T分布的概率密度原创 2023-02-22 12:06:28 · 191 阅读 · 0 评论 -
两个标准正态分布随机变量之和的概率密度
两个标准正态分布随机变量之和的概率密度原创 2023-02-24 10:03:36 · 962 阅读 · 0 评论 -
样本方差为什么除以n-1而不是n?
样本的方差为什么要除以n-1原创 2023-02-27 10:15:57 · 108 阅读 · 0 评论 -
平均数的期望和方差
平均数的期望和方差原创 2023-02-27 14:46:55 · 1138 阅读 · 0 评论 -
标准化随机变量的几处说明
标准化随机变量的几处说明原创 2023-02-28 09:56:39 · 419 阅读 · 0 评论 -
max{x,y}和min{x,y}的概率分布
max{x,y}和min{x,y}的概率分布原创 2023-02-23 10:01:08 · 1592 阅读 · 3 评论 -
GAMMA分布的可加性
GAMMA分布的可加性原创 2023-02-23 09:57:02 · 1604 阅读 · 3 评论 -
样本方差与总体方差之商服从卡方分布
鉴于繁琐的证明过程,一直没怎么关注这个定理的证明,后来发现,该定理在统计学中有大量应用,该定理是学习统计学绕不开的核心定理之一。为了加深印象和进一步领会证明过程,根据教材的讲解,再一次复述一下该定理的证明过程。由于u是z的线性变换,根据上面的(1.3)可得,若i=j则协方差为1,否则协方差为0。由此可以证明z的线性无关性,进一步的,结合上图课本中的截图,可以证明。上式中,若i=j则为1,否则为0。是一个重要的基础知识,需要理解的基础上牢记。服从自由度为n-1的。原创 2023-02-27 18:52:35 · 789 阅读 · 1 评论 -
李雅普诺夫定理及条件的解释
李雅普诺夫定理以及其条件的完美解释原创 2023-03-02 14:57:39 · 1701 阅读 · 0 评论 -
随机过程的2个例题探讨
从该例题,我们可以得出结论,初始值为0的独立增量随机过程一定是马氏过程,而且x(0) = 0是必要条件,不可或缺。但是反过来,马氏过程不一定是初始值为0的独立增量随机过程。上述结论的证明通过马氏过程的定义完成,即证明第j个和第n个独立增量相互独立,且该结论用到了第3章第4节的一个重要定理。泊松过程、维纳过程两者都是独立增量过程。题目虽然简单,但是理解起来还是有一些深度的。下面简单阐述一下自己对上图中两个结论的理解。因此可以简略的证明,上图中的结论是充分的。满足以上两个条件的随机过程都是马氏过程。原创 2023-08-14 09:57:16 · 614 阅读 · 0 评论 -
中心极限定理例题
是不同的,前者是标准差,后者是平方差。该形式在标准高斯分布和统计学中多有涉及。关于大数定律的两个题目。原创 2023-08-12 22:38:51 · 559 阅读 · 0 评论 -
一个概率论例题引发的思考
然而,仔细考虑之后发现不妥。在我自己的理解中,此题的解法跟上一个题目一样,第二级传输后,一共有4中可能性,按照平均概率相加即可。这个逻辑的本质区别就在于,它是利用后验概率去推算先验概率的,这是一种理论上的优越性。我们想要求解的概率P,它依赖于其概率矩阵的乘法运算,而不是说简单把4种转换相加。可以得出结论,此种题目的解题方法还是要回到马尔可夫概率转移矩阵中去找答案。这个解释和模型比较简单易懂。似乎抓到了什么,但是又特别模糊。原创 2023-08-11 10:43:02 · 1406 阅读 · 3 评论 -
平稳随机过程
但是,平稳过程的方差和均方值也是常数。此结论该如何证明呢?图中已经证明了,平稳过程的期望值是常数。原创 2023-08-10 17:49:39 · 157 阅读 · 0 评论 -
两个状态的马尔可夫链
(2)求得正交特征向量。原创 2023-08-09 21:56:55 · 1754 阅读 · 0 评论 -
马尔可夫链的性质和例子
马尔可夫的重要性质如下:原创 2023-08-09 10:06:52 · 2724 阅读 · 0 评论 -
【泊松过程数学公式推导】
理解了上面的思路才能更好的理解泊松过程的数学模型和本质。注意:此处需要求解一阶非齐次微分方程。带入上述一元非齐次微分方程可得。原创 2023-08-08 11:40:45 · 846 阅读 · 0 评论 -
随机变量的期望值运算
随机变量的期望值原创 2023-02-28 12:08:39 · 859 阅读 · 0 评论